切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2020, Vol. 08 ›› Issue (03) : 248 -258. doi: 10.3877/cma.j.issn.2095-5790.2020.03.011

所属专题: 专题评论 文献

论著

关于骨髓刺激技术在肩袖撕裂治疗作用的系统评价及Meta分析
王华溢1, 杨重飞1, 王远瑞1, 朱澍2, 朱锦宇3, 朱庆生1, 张大伟1,()   
  1. 1. 710032 西安,空军军医大学附属第一医院西京医院骨科
    2. 100000 北京,中国人民解放军空军特色医学中心骨科
    3. 518055 深圳大学总医院关节创伤科
  • 收稿日期:2020-03-20 出版日期:2020-08-05
  • 通信作者: 张大伟
  • 基金资助:
    社会发展攻关计划(2019SF-126)

Systematic evaluation and meta-analysis of bone marrow stimulation techniques in the treatment of rotator cuff tear

Huayi Wang1, Chongfei Yang1, Yuanrui Wang1, Shu Zhu2, Jinyu Zhu3, Qingsheng Zhu1, Dawei Zhang1,()   

  1. 1. Department of Orthopaedics, Xijing Hospital of Airforce Medical University, Xi'an 710032, China
    2. Department of Orthopaedics, Air Force General Hospital, Beijing 100000, China
    3. Department of Arthrotraumatology, Shenzhen University General Hospital, Shenzhen 518055, China
  • Received:2020-03-20 Published:2020-08-05
  • Corresponding author: Dawei Zhang
  • About author:
    Corresponding author: Zhang Dawei, Email:
引用本文:

王华溢, 杨重飞, 王远瑞, 朱澍, 朱锦宇, 朱庆生, 张大伟. 关于骨髓刺激技术在肩袖撕裂治疗作用的系统评价及Meta分析[J]. 中华肩肘外科电子杂志, 2020, 08(03): 248-258.

Huayi Wang, Chongfei Yang, Yuanrui Wang, Shu Zhu, Jinyu Zhu, Qingsheng Zhu, Dawei Zhang. Systematic evaluation and meta-analysis of bone marrow stimulation techniques in the treatment of rotator cuff tear[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2020, 08(03): 248-258.

目的

评估骨髓刺激技术在改善肩袖愈合及功能恢复中的作用。

方法

计算机检索Cochrane Library、PubMed、Medline、Embase、中国知网(CNKI)、维普(VIP)、万方及中国生物医学文献数据库(CBM)等数据库中关于应用骨髓刺激技术和单纯肩袖修复的比较研究,包括临床随机对照和回顾性队列研究。手工检索纳入研究的参考文献。提取各研究中指标数据,包括总体再撕裂率,大到巨大肩袖撕裂的再撕裂率,术后肩关节活动度(range of motion,ROM),视觉模拟评分(visual analogue scale,VAS),Constant-Murley肩关节功能评分(Constant-Murley score,CMS),加州福尼亚大学洛杉矶分校评分(University of California, Los Angeles shoulder rating scale,UCLA),美国肩肘外科协会评分(American shoulder and elbow surgeons score,ASES),手臂、肩膀和手的残疾问卷(disabilities of the arm, shoulder, and hand questionnaire ,DASH)各项功能评分。运用Revman 5.3软件对其进行分析和处理。

结果

共纳入2篇随机对照研究、6篇回顾性队列研究、2篇非对照回顾性研究共10篇文献进行系统回顾,Meta分析只纳入前8篇文献,患者共641例。Meta分析结果显示,与单纯肩袖修复相比,结合骨髓刺激技术能明显改善肩袖总体愈合效果[OR = 0.42,95% CI(0.28,0.63),P< 0.0001],大到巨大撕裂的肩袖修复术后再撕裂率也明显减少[OR = 0.28, 95% CI(0.13, 0.58), P = 0.0007]。而在肩关节疼痛VAS评分[SMD = -0.63, 95% CI(-1.40, 0.14), P = 0.11], ROM外旋[SMD = 0.05, 95% CI(-0.22, 0.32), P = 0.70]、前屈[SMD = 0.10, 95% CI(-0.17, 0.37), P = 0.47],CMS评分[SMD = 0.12, 95% CI(-0.09, 0.32), P = 0.26],UCLA评分[SMD = -0.04, 95% CI(-0.29, 0.21), P = 0.76],ASES评分[SMD= -0.06,95% CI(-0.33, 0.21), P = 0.67]及DASH评分[SMD = -0.15, 95% CI(-0.43, 0.13), P = 0.29]等方面的差异均无统计学意义。

结论

与单纯肩袖修复相比,结合骨髓刺激技术能明显改善肩袖修复能力,尤其值得关注的是该技术能够促进大到巨大撕裂肩袖的愈合,而在术后肩关节疼痛、ROM及功能方面未见明显差异。

Background

Advances in arthroscopic rotator cuff repairs techniques such as single-row, double-row, transosseous-equivalent technique (also called "suture bridge" ) , margin convergence and combined patch augmentation have been extensively adopted in clinic. However, despite the advances in repairing techniques, rather high re-tear incidence especially for large to massive tears have been reported from 20% to 94% after rotator cuff repairs. Considering that rotator cuff re-tear remain a substantial implication of functional outcomes after surgical repairing, biologically based strategies to improve the quality of tendon tissue after surgical reconstruction have gained increasing interest over the last several years. Stem cells, growth factors and other tissue engineering methods are increasingly being used to improve rotator cuff healing after repair. Mesenchymal stem cells (MSCs) have been suggested to promote rotator cuff healing and should be promoted clinically. Bone marrow stimulation technologies such as micro-fracture technology and multi-channel technology have also attracted much attention. This technology is simple, direct and inexpensive, which can provide sufficient MSCs for local tendon healing and promote the occurrence of microvascularization. This technique involves perforating the musculoskeletal joint, such as the foot print area of rotator cuff, into the cartilage and locally releasing BM-MSCs to facilitate healing. In a preclinical biomechanical study, the terminal failure load of rotator cuff was significantly increased in the BMS group compared with that in the control group. Animal studies have also shown that stem cells can infiltrate into the footprint area and ultimately strengthen the rotator cuff after repair. Hernigou et al. performed a case control study comparing patients who received simple single-row repair and enhanced repair with stem cells. The stem cell group had 100% intact repair at 6 months compared to 67% of control group, and at 10 years, the rate was 87% versus 44%. Several clinical studies and meta-analyses have found that bone marrow stimulation can definitely reduce the rate of re-tear after rotator cuff repair compared with conventional repair.

Objective

To evaluate the role of bone marrow stimulation technique in the improvement of rotator cuff healing and function.

Methods

The Cochrane Library, PubMed, Medline, Embase, CNKI, VIP, Wanfang and CBM and other databases were retrieved on the comparative studies of using bone marrow stimulation technology and simple rotator cuff repair, including clinical randomized controlled and retrospective cohort studies. manual search of The references of included studies were manually retrieved. The index data from each study was extracted, including overall re-tear rate, re-tear rate of large rotator cuff tears, postoperative shoulder joint mobility, visual analog scale (VAS) score, Constant-Murley score (CMS) , University of California, Los Angeles shoulder rating scale (UCLA) , American shoulder and elbow surgeons score (ASES) , and disabilities of the arm, shoulder, and hand questionnaire (DASH) . The Revman 5.3 software was used for analysis and process.

Results

A total of 2 randomized controlled studies and 6 retrospective cohort studies were included in the Meta-analysis. Two uncontrolled retrospective studies and 2 uncontrolled retrospective studies and previous 8 studies were included in the systematic review. The meta-analysis only included the first 8 articles with 641 patients. The results of meta-analysis show that, compared with simple rotator cuff repair, rotator cuff repair combined with bone marrow stimulation technology can significantly improve the overall healing effect of rotator cuff [OR = 0.42, 95% CI (0.28, 0.63) , P< 0.0001] . Meanwhile, the re-tear rate of large to massive rotator cuff tear after repair was also significantly reduced [OR = 0.28, 95% CI (0.13, 0.58) , P = 0.0007] . In terms of shoulder VAS score [SMD = -0.63, 95% CI (-1.40, 0.14) , P = 0.11] , range of motion (ROM) external rotation [SMD = 0.05, 95% CI (-0.22, 0.32) , P = 0.70] ; anteflexion [SMD = 0.10, 95% CI (-0.17, 0.37) , P = 0.47] , shoulder function CMS score [SMD = 0.12, 95% CI (-0.09, 0.32) , P = 0.26] , UCLA score [SMD = -0.04, 95% CI (-0.29, 0.21) , P = 0.76] , ASES score [SMD = -0.06, 95% CI (-0.33, 0.21) , P = 0.67] , and DASH score [SMD = -0.15, 95% CI (-0.43, 0.13) , P = 0.29] , there was no statistical difference.

Conclusions

Compared with simple rotator cuff repair, rotator cuff repair combined with bone marrow stimulation technology can significantly improve the rotator cuff repair capability. It is particularly noteworthy that this technology can promote the healing of large to massive rotator cuff tear, and there was no significant difference in postoperative shoulder pain, ROM and function.

图1 文献筛选流程
表1 纳入研究的基本信息及研究结果数据
作者 年份 治疗措施 患者例数 年龄(岁) 随访例数 男/女 影像检查 撕裂大小(cm)
Jo等[16] 2013 non-BMS 67 60.10±7.94 67/42* 33/34 MRI、CTA 所有可修复
BMS 57 58.89±8.67 57/45* 25/32
Dierckman等[17]# 2017 BMS 52(53肩) 62(44 ~ 82) 52 36/16 MRI 2 ~ 4
Pulatkan等[22] 2019 SR 40 59.2±10.1 40 15/25 MRI 3 ~ 5
BMS+SR 44 58.1±9.7 44 11/33
DR 39 60.6±9.8 39 11/28
Jo等[24] 2011 non-BMS 31 56.5±7.4 31 26/30 CTA 所有可修复
BMS 25 58.3±7.1 25
Milano等[25] 2013 non-BMS 40 63.1±9.2 38(8) 19/19 MRI <3[30] ≥3[8]
BMS 40 60.6±10.1 35(10) 22/13 <3[25] ≥3[10]
Osti等[26] 2013 non-BMS 29 59.8(34 ~ 71) 29 13/15 MRI >1
BMS 28 61.2(38 ~ 73) 28 16/12
Taniguchi等[27] 2015 non-BMS 67 64.3±1.1 67(35) 42/25 MRI >1
BMS 44 64.7±1.4 44(22) 22/15
孙鲁宁等[28]# 2018 BMS 24 48 ~ 76 24 7/17 MRI >3
费文勇等[29] 2018 non-BMS 15 58.8±3.8 15 6/9 超声 3.9±0.7(3 ~ 5)
BMS 15 58.3±5.2 15 7/8 4.3±0.6(3 ~ 5)
张庭等[30] 2019 non-BMS 30 57.4±10.3 30 10/20 MRI <5
BMS 30 58.9±9.8 30 13/17
作者 骨髓刺激细节 肩袖缝合方法 再撕裂例数 愈合例数 随访时间(月)
功能随访 影像随访
Jo等[16] 10 mm孔深; 2.1 mm孔径; 4 ~ 5 mm孔间距 DR 19 23 41.04±15.51 18.90±15.26
? 10 35 31.79±9.00 15.29±7.69
Dierckman等[17]# 5 ~ 7 mm孔深; 1.9 mm孔径 SR 5 48 34±9
Pulatkan等[22] 5 mm孔深;4 ~ 5 mm孔间距; 1.3 mm孔径 SR 13 30 (26 ~ 48)
6
DR 14 29 (27 ~ 37)
Jo等[24] 10 mm孔深; 2.1 mm孔径; 4 ~ 5 mm孔间距 DR 11 20 12.5±4.7
4 21
Milano等[25] 5 mm孔深, 1.5 mm孔径, 4 mm孔间距 SR 18[7] 20[1] 28.1±3
12[4] 23[6]
Osti等[26] 2 ~ 4 mm孔深; 3 ~ 4 mm孔间距 SR 3 26 29.0±8.6 (24 ~ 53)
2 26
Taniguchi等[27] 3 ~ 5 mm孔间距; 3 mm孔径 ASH 16[10] 14.4±0.5
4[1] 12.6±0.2
孙鲁宁等[28]# 2 mm孔径 SR 2 12
费文勇等[29] 10 mm孔深; 4 ~ 5 mm孔间距; 1.9 mm孔径 SB 8 14.2±1.6
6 13.7±2.2
张庭等[30] 10 mm孔间距; 2 mm孔径 DR或SB 7 12
4
作者 术后功能评分(±s) 证据等级
VAS ROM(中立位外旋) ROM (前屈) CMS UCLA ASES DASH SST SPADI
Jo等[16] 0.99±1.46 49.10±17.92 169.85±20.43 76.28±13.53 30.99±5.08 88.14±15.16 12.40±18.16 9.73±2.63 11.93±17.01
1.09±1.66 52.02±18.85 170.00±19.39 75.61±14.67 31.33±4.36 87.75±17.05 10.83±14.58 10.37±2.30 11.21±16.66
Dierckman等[17]#
Pulatkan等[22] 3 (1 ~ 8) 75.5±12.5
2 (1 ~ 7) 79.8±8.4
3 (1 ~ 7) 71.0±10.9
Jo等[24]
Milano等[25] 92.7±16.7 [88.7±21.1] 28.6±21.3
94.5±14.0[89.5±12.6] 23.3±20.1
Osti等[26] 61.0±9.8 171.0±11.9 91.0±7.3 32.1±5.8
60.8±9.3 173.0±12.4 92.3±7.7 32.6±6.0
Taniguchi等[27]#
孙鲁宁等[28] 0.4±0.1 30.4±4.2 77.6±17.5
费文勇等[29] 1.9±0.6 44.4±3.7 166.5±5.3 88.9±2.5 90.7±3.6
0.9±0.6 43.5±3.5 168.5±5.2 87.4±3.4 92.3±4.2
张庭等[30] 33.40±2.71 84.60±3.98
32.30±2.88 83.10±4.23
表2 纳入研究的方法学质量评估表
图2 术后肩袖再撕裂率森林图
图3 术后肩袖再撕裂率(大到巨大撕裂)森林图
图4 术后肩部VAS评分森林图
图5 术后肩关节中立位外旋角度森林图
图6 术后肩关节前屈角度森林图
图7 术后肩关节CMS评分森林图
图8 术后肩关节CMS评分(大到巨大撕裂)森林图
图9 术后肩关节UCLA评分森林图
图10 术后肩关节ASES评分森林图
图11 术后肩关节DASH评分森林图
[1]
Rossi LA, Rodeo SA, Chahla J, et al. Current concepts in rotator cuff repair techniques: biomechanical, functional, and structural outcomes[J]. Orthop J Sports Med,2019,7(9):2325967119868674.
[2]
Ren YM, Zhang HB, Duan YH, et al. Comparison of arthroscopic suture-bridge technique and double-row technique for treating rotator cuff tears[J]. Medicine(Baltimore),2019,98(20):e15640.
[3]
Sobhy MH, Khater AH, Hassan MR, et al. Do functional outcomes and cuff integrity correlate after single- versus double-row rotator cuff repair? A systematic review and meta-analysis study[J]. Eur J Orthop Surg Traumatol,2018,28(4):593-605.
[4]
Maillot C, Martellotto A, Demezon H, et al. Multiple treatment comparisons for large and massive rotator cuff tears: a network meta-analysis[J]. Clin J Sport Med,2019,15:1-8.
[5]
Bailey JR, Kim C, Alentorn-Geli E, et al. Rotator cuff matrix augmentation and interposition: a systematic review and meta-analysis[J]. Am J Sports Med,2019,47(6):1496-1506.
[6]
Prasathaporn N, Kuptniratsaikul S, Kongrukgreatiyos K. Single-row repair versus double-row repair of full-thickness rotator cuff tears[J]. Arthroscopy,2011,27(7):978-985.
[7]
Boileau P, Brassart N, Watkinson DJ, et al. Arthroscopic repair of full-thickness tears of the supraspinatus, Does the tendon really heal?[J]. J Bone Joint Surg Am,2005,87(6):1229-1240.
[8]
Cole BJ, McCarty LP 3rd, Kang RW, et al. Arthroscopic rotator cuff repair: prospective functional outcome and repair integrity at minimum 2-year follow-up[J]. J Shoulder Elbow Surg,2007,16(5):579-585.
[9]
Sugaya H, Maeda K, Matsuki K, et al. Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation[J]. Arthroscopy,2005,21(11):1307-1316.
[10]
Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing[J]. Connect Tissue Res,2011,52(2):87-98.
[11]
Isaac C, Gharaibeh B, Witt M, et al. Biologic approaches to enhance rotator cuff healing after injury[J]. J Shoulder Elbow Surg,2012,21(2):181-190.
[12]
Anz AW, Hackel JG, Nilssen EC, et al. Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis[J]. J Am Acad Orthop Surg,2014,22(2):68-79.
[13]
Beitzel K, Solovyova O, Cote MP, et al. The future role of mesenchymal stem cells in the management of shoulder disorders[J]. Arthroscopy,2013,29(10):1702-1711.
[14]
Song N, Armstrong AD, Li F, et al. Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering[J]. Tissue Eng Part A,2014,20(1-2):239-249.
[15]
Bonnevialle N, Bayle X, Faruch M, et al. Does microvascularization of the footprint play a role in rotator cuff healing of the shoulder?[J]. J Shoulder Elbow Surg,2015,24(8):1257-1262.
[16]
Jo CH, Shin JS, Park IW, et al. Multiple channeling improves the structural integrity of rotator cuff repair[J]. Am J Sports Med,2013,41(11):2650-2657.
[17]
Dierckman BD, Ni JJ, Karzel RP, et al. Excellent healing rates and patient satisfaction after arthroscopic repair of medium to large rotator cuff tears with a single-row technique augmented with bone marrow vents[J]. Knee Surg Sports Traumatol Arthrosc,2018,26(1):136-145.
[18]
Bilsel K, Yildiz F, Kapicioglu M, et al. Efficacy of bone marrow-stimulating technique in rotator cuff repair[J]. J Shoulder Elbow Surg,2017,26(8):1360-1366.
[19]
Kida Y, Morihara T, Matsuda K, et al. Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff[J]. J Shoulder Elbow Surg,2013,22(2):197-205.
[20]
Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study[J]. Int Orthop,2014,38(9):1811-1818.
[21]
Ajrawat P, Dwyer T, Almasri M, et al. Bone marrow stimulation decreases retear rates after primary arthroscopic rotator cuff repair: a systematic review and meta-analysis[J]. J Shoulder Elbow Surg,2019,28(4):782-791.
[22]
Pulatkan A, Anwar W, Tokdemir S, et al. The clinical and radiologic outcome of microfracture on arthroscopic repair for full-thickness rotator cuff tear[J]. J Shoulder Elbow Surg,2020,29(2):252-257.
[23]
Li Z, Zhang Y. Efficacy of bone marrow stimulation in arthroscopic repair of full thickness rotator cuff tears: a meta-analysis[J]. J Orthop Surg Res,2019,14(1):36.
[24]
Jo CH, Yoon KS, Lee JH, et al. The effect of multiple channeling on the structural integrity of repaired rotator cuff[J]. Knee Surg Sports Traumatol Arthrosc,2011,19(12):2098-2107.
[25]
Milano G, Saccomanno MF, Careri S, et al. Efficacy of marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study[J]. Arthroscopy,2013,29(5):802-810.
[26]
Osti L, Del Buono A, Maffulli N. Microfractures at the rotator cuff footprint: a randomised controlled study[J]. Int Orthop,2013,37(11):2165-2171.
[27]
Taniguchi N, Suenaga N, Oizumi N, et al. Bone marrow stimulation at the footprint of arthroscopic surface-holding repair advances cuff repair integrity[J]. J Shoulder Elbow Surg,2015,24(6):860-866.
[28]
孙鲁宁, 束昊, 袁滨, 等. 关节镜下单排带线锚钉修补结合大结节骨髓刺激治疗大到巨大肩袖撕裂[J/CD]. 中华肩肘外科电子杂志,2018,6(2):97-104.
[29]
费文勇, 王静成, 熊传芝, 等. 关节镜下肩袖足印区骨髓开窗技术在全层大肩袖损伤修复中的应用[J]. 中华创伤骨科,2018,20(12):1016-1030.
[30]
张庭, 孙学斌, 邓迎杰, 等. 去骨皮质新鲜化和髓质激发在肩袖损伤修补术后的近期疗效观察[J/OL]. 重庆医学,2019[2019-12-19].

URL    
[31]
Vastamaki M, Lohman M, Borgmastars N. Rotator cuff integrity correlates with clinical and functional results at a minimum 16 years after open repair[J]. Clin Orthop Relat Res,2013,471(2):554-561.
[32]
Synder JS, Burns J. Rotator cuff healing and the bone marrow "crimson duvet" from clinical observations to science[J]. Tech Should Surg,2009,10(4):130-137.
[33]
Cai YZ, Zhang C, Lin XJ. Efficacy of platelet-rich plasma in arthroscopic repair of full-thickness rotator cuff tears: a meta-analysis[J]. J Shoulder Elbow Surg,2015,24(12):1852-1859.
[1] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[2] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[3] 马鹏程, 刘伟, 张思平. 股骨髋臼撞击综合征关节镜手术中闭合关节囊的疗效影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 653-662.
[4] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[5] 邢阳, 何爱珊, 康焱, 杨子波, 孟繁钢, 邬培慧. 前交叉韧带单束联合前外侧结构重建的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 508-519.
[6] 李雄雄, 周灿, 徐婷, 任予, 尚进. 初诊导管原位癌伴微浸润腋窝淋巴结转移率的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 466-474.
[7] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[8] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[9] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[10] 张成仁, 杨熊飞, 杜斌斌, 柳利利, 李晶晶, 朱成章, 吴德望, 吕耀春. 转移灶不可切除的无症状结直肠癌是否行原发灶肿瘤切除术的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 305-310.
[11] 刘佳铭, 孙晓容, 文健, 何晓丽, 任茂玲. 有氧运动对成人哮喘肺功能、生活质量以及哮喘控制影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 592-595.
[12] 段文忠, 白延霞, 徐文亭, 祁虹霞, 吕志坚. 七氟烷和丙泊酚在肝切除术中麻醉效果比较Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 640-645.
[13] 杨海龙, 邓满军, 樊羿辰, 徐梦钰, 陈芳德, 吴威浩, 张生元. 腹腔镜胆总管探查术一期缝合术后胆漏危险因素Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 545-550.
[14] 徐红莉, 杨钰琳, 薛清, 张茜, 马丽虹, 邱振刚. 体外冲击波治疗非特异性腰痛疗效的系统评价和Meta分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 307-314.
[15] 苏慧媛, 宋洪涛, 高巍, 武忠. 针刺治疗单纯性肥胖的系统评价和Meta分析[J]. 中华针灸电子杂志, 2023, 12(03): 123-128.
阅读次数
全文


摘要