切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 356 -361. doi: 10.3877/cma.j.issn.2095-5790.2024.04.011

综述

人工智能技术在肩袖损伤中的研究进展
王洪1, 王骏华1, 范建楠1,()   
  1. 1.550000 贵州医科大学附属医院运动医学科/骨科
  • 收稿日期:2024-04-30 出版日期:2024-11-05
  • 通信作者: 范建楠
  • 基金资助:
    贵州省科技厅科技计划项目(黔科合基础-ZK[2021]一般112)贵州省卫生健康委科学技术基金项目(gzwkj2020-052)贵州省中医药管理局中医药、民族医药科学技术项目(QZYY-2020-062)

Research progress of artificial intelligence in rotator cuff injury

Hong Wang, Junhua Wang, Jiannan Fan()   

  • Received:2024-04-30 Published:2024-11-05
  • Corresponding author: Jiannan Fan
引用本文:

王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.

Hong Wang, Junhua Wang, Jiannan Fan. Research progress of artificial intelligence in rotator cuff injury[J/OL]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2024, 12(04): 356-361.

肩袖损伤是临床上常见的肩关节疾病,发病率逐年增高,严重影响患者的肩关节功能。人工智能(artificial intelligence, AI)是指利用计算机系统模拟、延伸和扩展AI 的过程,包括但不限于逻辑判断、数据存储、搜索以及通过机器学习等方法实现的智能行为。近年来,随着计算机视觉技术和图像处理算法的不断发展,AI 在医学领域中的应用越来越广泛。AI 技术能够通过分析医学影像数据和计算机视觉技术提取有效信息,从而对患者进行辅助诊断,还可以通过大数据分析为临床医生提供治疗决策支持。随着AI 技术的发展,对肩袖损伤疾病的诊断、治疗和预后越来越重视。本文综述了AI 在肩袖损伤疾病诊断、预测模型建立、伤口护理和康复等方面的研究进展,为临床治疗提供更多参考依据。

[1]
Jain NB, Wilcox RB 3rd, Katz JN, et al. Clinical Examination of the Rotator Cuff[J]. PM R, 2013, 5(1):45-56.
[2]
Dang A, Davies M. Rotator Cuff Disease:Treatment Options and Considerations[J]. Sports Med Arthrosc Rev,2018,26(3):129-133.
[3]
刘蓬然,陆林,霍彤彤,等.人工智能技术在骨科领域中的应用进展[J].中华骨科杂志,2020,40(24):1699-1704.
[4]
Karnuta JM, Haeberle HS, Luu BC, et al. Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Hip[J]. J Arthroplasty,2021,36(7S) :S290-S294.e1.
[5]
Minelli M, Cina A, Galbusera F, et al. Correction to:Measuring the critical shoulder angle on radiographs:an accurate and repeatable deep learning model[J]. Skeletal Radiol,2022,51(9):1905.
[6]
Iio R, Ueda D, Matsumoto T, et al. Deep learning-based screening tool for rotator cuff tears on shoulder radiography[J]. J Orthop Sci,2024 ,29(3):828-834.
[7]
Kim Y, Choi D, Lee KJ, et al. Ruling out rotator cuff tear in shoulder radiograph series using deep learning:redefining the role of conventional radiograph[J]. Eur Radiol,2020,30(5):2843-2852.
[8]
Kang Y, Choi D, Lee KJ, et al. Evaluating subscapularis tendon tears on axillary lateral radiographs using deep learning[J]. Eur Radiol,2021,31(12):9408-9417.
[9]
Hashimoto E, Maki S, Ochiai N, et al. Automated detection and classification of the rotator cuff tear on plain shoulder radiograph using deep learning[J]. J Shoulder Elbow Surg,2024,33(8):1733-1739.
[10]
Zhao Y, Qiu J, Li Y, et al. Machine-learning models for diagnosis of rotator cuff tears in osteoporosis patients based on anteroposterior X-rays of the shoulder joint[J]. SLAS Technol,2024,29(4):100149.
[11]
Okuda S , Fujita D , Tanaka H ,et al.Detection of Shoulder Rotator Cuff Tears from X-Ray Image by Using Convolutional Neural Network[J].J Japan Soci Fuzzy Theory Intelligent Informatics,2023, 35(1):593-597.
[12]
Longo UG, Di Naro C, Campisi S, et al. Application of Machine Learning Algorithms for Prognostic Assessment in Rotator Cuff Pathologies:A Clinical Data-Based Approach[J]. Diagnostics(Basel),2023,13(18):2915.
[13]
张继民. 基于MSCT 技术对肩关节骨性结构与肩袖损伤的相关性研究[J]. 中国CT 和MRI 杂志, 2018, 16 (9):137-140.
[14]
Taghizadeh E, Truffer O, Becce F, et al. Deep learning for the rapid automatic quantification and characterization of rotator cuff muscle degeneration from shoulder CT datasets[J]. Eur Radiol,2021,31(1):181-190.
[15]
Eminian S , Taghizadeh E , Truffer O ,et al. Deep Learning for the Automatic Quantification of Rotator Cuff Muscle Degeneration from Shoulder CT Data Sets[J]. Eur Radiol, 2019, 23(S02):A024.
[16]
Kim KC, Lee WY, Shin HD, et al. Repair integrity and functional outcomes of arthroscopic repair for intratendinous partial-thickness rotator cuff tears[J]. J Orthop Surg (Hong Kong) ,2019,27(2):2309499019847227.
[17]
Lee KC, Cho Y, Ahn KS, et al. Deep-Learning-Based Automated Rotator Cuff Tear Screening in Three Planes of Shoulder MRI[J]. Diagnostics (Basel) , 2023,13(20):3254.
[18]
Lin DJ, Schwier M, Geiger B, et al. Deep Learning Diagnosis and Classification of Rotator Cuff Tears on Shoulder MRI[J]. Invest Radiol,2023,58(6):405-412.
[19]
Guo D, Liu X, Wang D, et al. Development and clinical validation of deep learning for auto-diagnosis of supraspinatus tears[J]. J Orthop Surg Res,2023,18(1):426.
[20]
Kim SH, Yoo HJ, Yoon SH, et al. Development of a deep learningbased fully automated segmentation of rotator cuff muscles from clinical MR scans[J]. Acta Radiol,2024,65(9):1126-1132.
[21]
Yao J, Chepelev L, Nisha Y, et al. Evaluation of a deep learning method for the automated detection of supraspinatus tears on MRI[J]. Skeletal Radiol, 2022,51(9):1765-1775.
[22]
Esfandiari MA, Fallah Tafti M, Jafarnia Dabanloo N, et al. Detection of the rotator cuff tears using a novel convolutional neural network from magnetic resonance image (MRI) [J]. Heliyon,2023,9(5):e15804.
[23]
Johnson PM, Recht MP, Knoll F. Improving the Speed of MRI with Artificial Intelligence[J]. Semin Musculoskelet Radiol,2020,24(1):12-20.
[24]
Lin DJ, Walter SS, Fritz J. Artificial Intelligence-Driven Ultra-Fast Superresolution MRI:10-Fold Accelerated Musculoskeletal Turbo Spin Echo MRI Within Reach[J]. Invest Radiol,2023 ,58(1):28-42.
[25]
Kim M, Park H, Kim JY, et al. MRI-based diagnosis of rotator cuff tears using deep learning and weighted linear combinations[C]// Ravikumar P, Zhang T. Machine Learning for Healthcare Conference. Ghent:PMLR, 2020:292-308.
[26]
Ro K, Kim JY, Park H, et al. Deep-learning framework and computer assisted fatty infiltration analysis for the supraspinatus muscle in MRI[J]. Sci Rep,2021,11(1):15065.
[27]
Riem L, Feng X, Cousins M, et al. A Deep Learning Algorithm for Automatic 3D Segmentation of Rotator Cuff Muscle and Fat from Clinical MRI Scans[J]. Radiol Artif Intell,2023,5(2):e220132.
[28]
Kim H, Shin K, Kim H, et al. Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears? [J]. PLoS One,2022,17(10):e0274075.
[29]
Ro K, Kim JY, Park H, et al. Deep-learning framework and computer assisted fatty infiltration analysis for the supraspinatus muscle in MRI[J]. Sci Rep,2021,11(1):15065.
[30]
Shim E, Kim JY, Yoon JP, et al. Author Correction:Automated rotator cuff tear classification using 3D convolutional neural network[J]. Sci Rep,2021,11(1):15996.
[31]
Lee SH, Lee J, Oh KS, et al. Automated 3-dimensional MRI segmentation for the posterosuperior rotator cuff tear lesion using deep learning algorithm[J]. PLoS One,2023,18(5):e0284111.
[32]
Key S, Demir S, Gurger M,et al. ViVGG19:Novel exemplar deep feature extraction-based shoulder rotator cuff tear and biceps tendinosis detection using magnetic resonance images[J]. Med Eng Phys,2022 ,110:103864.
[33]
Lee K, Kim JY, Lee MH, et al. Imbalanced Loss-Integrated Deep-Learning-Based Ultrasound Image Analysis for Diagnosis of Rotator-Cuff Tear[J]. Sensors (Basel) ,2021,21(6):2214.
[34]
Lee K , Yang J , Lee MH, et al. USG-Net:Deep Learning-based Ultrasound Scanning-Guide for an Orthopedic Sonographer[J].Springer Cham, 2022:23-32.
[35]
Ho TT, Kim GT, Kim T, et al. Classification of rotator cuff tears in ultrasound images using deep learning models[J]. Med Biol Eng Comput,2022,60(5):1269-1278.
[36]
Chiu PH, Boudier-Revéret M, Chang SW, et al. Deep Learning for Detecting Supraspinatus Calcific Tendinopathy on Ultrasound Images[J]. J Med Ultrasound,2022,30(3):196-202.
[37]
Yu L, Li Y, Wang XF, et al. Analysis of the value of artificial intelligence combined with musculoskeletal ultrasound in the differential diagnosis of pain rehabilitation of scapulohumeral periarthritis[J]. Medicine (Baltimore) ,2023,102(14):e33125.
[38]
Potty AG, Potty ASR, Maffulli N, et al. Approaching Artificial Intelligence in Orthopaedics:Predictive Analytics and Machine Learning to Prognosticate Arthroscopic Rotator Cuff Surgical Outcomes[J]. J Clin Med,2023,12(6):2369.
[39]
Allaart LJH, Spanning SV, Lafosse L, et al. Machine Learning Consortium. Developing a machine learning algorithm to predict probability of retear and functional outcomes in patients undergoing rotator cuff repair surgery:protocol for a retrospective, multicentre study[J]. BMJ Open,2023,13(2):e063673.
[40]
费扬.基于影像组学技术的肩袖损伤诊断和肩袖修补术后再撕裂预测模型[D].杭州:浙江大学,2021.
[41]
Zhang Z, Ke C, Zhang Z, et al. Re-tear after arthroscopic rotator cuff repair can be predicted using deep learning algorithm[J]. Front Artif Intell,2024,29(7):1331853.
[42]
Cho SH, Kim YS. Prediction of Retear After Arthroscopic Rotator Cuff Repair Based on Intraoperative Arthroscopic Images Using Deep Learning[J]. Am J Sports Med,2023,51(11):2824-2830.
[43]
Audigé L, Aghlmandi S, Grobet C, et al. Prediction of Shoulder Stiffness After Arthroscopic Rotator Cuff Repair[J]. Am J Sports Med,2021,49(11):3030-3039.
[44]
Li C, Alike Y, Hou J, et al. Machine learning model successfully identifies important clinical features for predicting outpatients with rotator cuff tears[J]. Knee Surg Sports Traumatol Arthrosc,2023,31(7):2615-2623.
[45]
Darevsky DM, Hu DA, Gomez FA, et al. A Tool for Low-Cost,Quantitative Assessment of Shoulder Function Using Machine Learning[J]. medRxiv,2023 ,17:2023.04.14.23288613.
[46]
Zhou XY , Guo Y , Shen M ,et al.Artificial Intelligence in Surgery[J].医学前沿:英文版, 2020, 14(4):14.
[47]
Familiari F, Galasso O, Massazza F, et al.. Artificial Intelligence in the Management of Rotator Cuff Tears[J]. Int J Environ Res Public Health,2022,19(24):16779.
[48]
Barakat-Johnson M, Jones A, Burger M,et al. Reshaping Wound Care:Evaluation of an Artificial Intelligence App to Improve Wound Assessment and Management[J]. Stud Health Technol Inform,2024,25(310):941-945.
[49]
Cunha B, Ferreira R, Sousa ASP. Home-Based Rehabilitation of the Shoulder Using Auxiliary Systems and Artificial Intelligence:An Overview[J]. Sensors (Basel) ,2023,23(16):7100.
[50]
Liao WJ, Lee KT, Chiang LY,et al.Postoperative Rehabilitation after Anterior Cruciate Ligament Reconstruction through Telerehabilitation with Artificial Intelligence Brace during COVID-19 Pandemic[J]. J Clin Med,2023,12(14):4865.
[51]
Kubota S, Kadone H, Shimizu Y, et al. Robotic Shoulder Rehabilitation With the Hybrid Assistive Limb in a Patient With Delayed Recovery After Postoperative C5 Palsy:A Case Report[J]. Front Neurol, 2021, 12:676352.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[3] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 钟锴, 蒋铁民, 张瑞青, 吐尔干艾力·阿吉, 邵英梅, 郭强. 加速康复外科在肝囊型棘球蚴病肝切除术中的应用分析[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 425-429.
[6] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[7] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[8] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[9] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[13] 刘芳明, 石秀秀, 唐冲, 张克石, 徐影, 王桂杉, 关振鹏, 李晓. 骨科康复患者对数字疗法应用的知晓度和需求度:一项基于928 份问卷调查结果分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 654-661.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要