切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 362 -368. doi: 10.3877/cma.j.issn.2095-5790.2024.04.012

综述

聚合物材料在肩袖损伤治疗中的研究进展
胡子豪1, 王喆1, 陈建海2, 齐岩松1,(), 徐永胜1,()   
  1. 1.010017 呼和浩特,内蒙古自治区人民医院骨科中心(运动医学中心)
    2.100044 北京大学人民医院创伤骨科
  • 收稿日期:2024-07-24 出版日期:2024-11-05
  • 通信作者: 齐岩松, 徐永胜
  • 基金资助:
    内蒙古自治区自然科学基金项目(2024LHMS08015)

Research progress of polymer materials in the treatment of rotator cuff injury

Zihao Hu, Zhe Wang, Jianhai Chen, Yansong Qi(), Yongsheng Xu()   

  • Received:2024-07-24 Published:2024-11-05
  • Corresponding author: Yansong Qi, Yongsheng Xu
引用本文:

胡子豪, 王喆, 陈建海, 齐岩松, 徐永胜. 聚合物材料在肩袖损伤治疗中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 362-368.

Zihao Hu, Zhe Wang, Jianhai Chen, Yansong Qi, Yongsheng Xu. Research progress of polymer materials in the treatment of rotator cuff injury[J/OL]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2024, 12(04): 362-368.

肩袖损伤(rotator cuffinjury,RCT)作为一种常见的肩部疾病,其发病率随年龄增长而攀升,给患者带来关节疼痛、僵硬和活动受限等诸多困扰。其中,巨大肩袖撕裂更是治疗难题,尽管手术成为主要治疗手段,但术后再撕裂率居高不下,成为影响治疗效果的重要因素。为降低再撕裂率、改善手术效果,各种聚合物材料补片及支架应运而生,为大面积RCT 提供了更多选择。本文综述了应用聚合物材料在治疗RCT 方面,特别是巨大撕裂的治疗机制、材料分类及其在临床实践中的应用进展,同时还探讨了聚合物材料肩袖补片在动物实验中的研究进展。通过这一全面的梳理,旨在为临床工作者提供更多针对RCT 的有效治疗方案指导,为新型聚合物材料的研究与探索提供一定思路。

表1 不同聚合物材料优势与局限性
[1]
马秉贤,张永,包呼日查,等.基于CT 三维模型分析肩胛下肌腱损伤患者喙突形态和位置的研究[J/CD].中华肩肘外科电子杂志, 2021, 9(3):229-235.
[2]
陈宇琦,张磊,石慧生,等. 肩袖损伤关节镜下缝合修复术后再撕裂的风险因素分析 [J/CD]. 中华肩肘外科电子杂志, 2022,10(1):7-13.
[3]
Parsons IM, Apreleva M, Fu FH, et al. The effect of rotator cuff tears on reaction forces at the glenohumeral joint [J]. J Orthop Res,2002, 20(3):439-446.
[4]
Oh JH, McGarry MH, Jun BJ, et al. Restoration of shoulder biomechanics according to degree of repair completion in a cadaveric model of massive rotator cuff tear:importance of margin convergence and posterior cuff fixation [J]. Am J Sports Med,2012, 40(11):2448-2453.
[5]
Deymier AC, An Y, Boyle JJ, et al. Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater [J]. Acta Biomater,2017, 56:25-35.
[6]
Li Y, Zhou M, Zheng W, et al. Scaffold-based tissue engineering strategies for soft-hard interface regeneration [J]. Regen Biomater,2023, 10:rbac091.
[7]
Killian ML, Cavinatto L, Galatz LM, et al. The role of mechanobiology in tendon healing [J]. J Shoulder Elbow Surg,2012, 21(2):228-237.
[8]
Ricard-Blum S. The collagen family [J]. Cold Spring Harb Perspect Biol, 2011, 3(1):a004978.
[9]
Zhu M, Tay ML, Callon K, et al. Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model [J]. J Shoulder Elbow Surg, 2019, 28(5):949-958.
[10]
Hurley ET, Crook BS, Danilkowicz RM, et al. Acellular Collagen Matrix Patch Augmentation of Arthroscopic Rotator Cuff Repair Reduces Re-Tear Rates:A Meta-Analysis of Randomized Control Trials [J]. Arthroscopy, 2023:S0749-8063(23)00801-0.
[11]
Kim H, Cho YS, Jung Y, et al. Effect of Porcine-Derived Absorbable Patch-Type Atelocollagen for Arthroscopic Rotator Cuff Repair:A Prospective Randomized Controlled Trial [J]. Am J Sports Med,2024, 52(6):1439-1448.
[12]
Aldhafian OR, Choi KH, Cho HS, et al. Outcome of intraoperative injection of collagen in arthroscopic repair of full-thickness rotator cuff tear:a retrospective cohort study [J]. J Shoulder Elbow Surg,2023, 32(9):e429-e436.
[13]
Thangarajah T, Ling FK, Lo IK. Isolated Bioinductive Arthroscopic Repair of Partial-Thickness Rotator Cuff Tears Using a Resorbable Collagen Implant [J]. JBJS Essent Surg Tech, 2022, 12(1):e21.00008.
[14]
Ruiz Ibán MÁ, García Navlet M, Moros Marco S, et al.Augmentation of a Transosseous-Equivalent Repair in Posterosuperior Nonacute Rotator Cuff Tears With a Bioinductive Collagen Implant Decreases the Retear Rate at 1 Year:A Randomized Controlled Trial [J]. Arthroscopy, 2024, 40(6):1760-1773.
[15]
Zhang T, Ajayi A, Hajjar M, et al. Arthroscopic Repair of Retracted Large and Massive Rotator Cuff Tears With and Without Augmentation With a Bio-Inductive Collagen Implant Reveals Substantial and Comparable Clinical Improvement [J].Arthroscopy, 2024, 40(5):1434-1442.
[16]
Qian S, Wang Z, Zheng Z, et al. A Collagen and Silk Scaffold for Improved Healing of the Tendon and Bone Interface in a Rabbit Model [J]. Med Sci Monit, 2019, 25:269-278.
[17]
Cai YZ, Zhang C, Jin RL, et al. Arthroscopic Rotator Cuff Repair With Graft Augmentation of 3-Dimensional Biological Collagen for Moderate to Large Tears:A Randomized Controlled Study [J]. Am J Sports Med, 2018, 46(6):1424-1431.
[18]
Yamaura K, Mifune Y, Inui A, et al. Novel therapy using a fish scale collagen scaffold for rotator cuff healing in rat models [J]. J Shoulder Elbow Surg, 2022, 31(12):2629-2637.
[19]
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials [J]. Mar Drugs, 2023, 21(6):353.
[20]
Kim DH, Min SG, Yoon JP, et al. Mechanical Augmentation With Absorbable Alginate Sheet Enhances Healing of the Rotator Cuff[J]. Orthopedics, 2019, 42(1):e104-e110.
[21]
Yoon JP, Lee CH, Jung JW, et al. Sustained Delivery of Transforming Growth Factor β1 by Use of Absorbable Alginate Scaffold Enhances Rotator Cuff Healing in a Rabbit Model [J].Am J Sports Med, 2018, 46(6):1441-1450.
[22]
Julia P, Kelly H, Deepika D. Comprehensive review on pretreatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications [J].Green Chem, 2022, 24(18):6790-6809.
[23]
Funakoshi T, Majima T, Suenaga N, et al. Rotator cuff regeneration using chitin fabric as an acellular matrix [J]. J Shoulder Elbow Surg, 2006, 15(1):112-118.
[24]
Nuss CA, Huegel J, Boorman-Padgett JF, et al. Poly-N-Acetyl Glucosamine (sNAG) Enhances Early Rotator Cuff Tendon Healing in a Rat Model [J]. Ann Biomed Eng, 2017, 45(12):2826-2836.
[25]
Fang F, Linstadt RTH, Genin GM, et al. Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [J]. Adv Healthc Mater, 2022, 11(10):e2102344.
[26]
Mano JF, Reis RL. Osteochondral defects:present situation and tissue engineering approaches [J]. J Tissue Eng Regen Med, 2007,1(4):261-273.
[27]
McCarron JA, Milks RA, Chen X, et al. Improved timezero biomechanical properties using poly-L-lactic acid graft augmentation in a cadaveric rotator cuff repair model [J]. J Shoulder Elbow Surg, 2010, 19(5):688-696.
[28]
Proctor CS. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device [J]. J Shoulder Elbow Surg, 2014, 23(10):1508-1513.
[29]
Haim Zada M, Kumar A, Elmalak O, et al. Biodegradable implantable balloons:Mechanical stability under physiological conditions [J]. J Mech Behav Biomed Mater, 2019, 100:103404.
[30]
Haim Zada M, Kumar A, Elmalak O, et al. In vitro and in vivo degradation behavior and the long-term performance of biodegradable PLCL balloon implants [J]. Int J Pharm, 2020, 574:118870.
[31]
Félix Lanao RP, Jonker AM, Wolke JG, et al. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration [J]. Tissue Eng Part B Rev, 2013, 19(4):380-390.
[32]
Taylor BL, Kim DH, Huegel J, et al. Localized delivery of ibuprofen via a bilayer delivery system (BiLDS) for supraspinatus tendon healing in a rat model [J]. J Orthop Res, 2020, 38(11):2339-2349.
[33
] Chen P, Cui L, Fu SC, et al. The 3D-Printed PLGA Scaffolds Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Augment the Healing of Rotator Cuff Repair in the Rabbits [J].Cell Transplant, 2020, 29:963689720973647.
[34]
Chen P, Cui L, Chen G, et al. The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair [J]. Int J Biol Macromol,2019, 138:79-88.
[35]
Yokoya S, Mochizuki Y, Nagata Y, et al. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model [J]. Am J Sports Med, 2008, 36(7):1298-1309.
[36]
Du C, Wu R, Yan W, et al. Ultrasound-Controlled Delivery of Growth Factor-Loaded Cerasomes Combined with Polycaprolactone Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells for Biomimetic Tendon-to-Bone Interface Engineering [J]. ACS Appl Mater Interfaces, 2024, 16(1):292-304.
[37]
Kim W, Kim GE, Attia Abdou M, et al. Tendon-Inspired Nanotopographic Scaffold for Tissue Regeneration in Rotator Cuff Injuries [J]. ACS Omega, 2020, 5(23):13913-13925.
[38]
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials, 2000, 21(23):2335-2346.
[39]
Okamura K, Makihara T. Cable Graft:Simple Superior Capsule Reconstruction Technique for Irreparable Rotator Cuff Tear Using a Teflon Patch [J]. Arthrosc Tech, 2020, 9(4):e575-e580.
[40]
Smolen D, Haffner N, Mittermayr R, et al. Application of a new polyester patch in arthroscopic massive rotator cuff repair-a prospective cohort study [J]. J Shoulder Elbow Surg, 2020, 29(1):e11-e21.
[41]
Seker V, Hackett L, Lam PH, et al. Evaluating the Outcomes of Rotator Cuff Repairs With Polytetrafluoroethylene Patches for Massive and Irreparable Rotator Cuff Tears With a Minimum 2-Year Follow-up [J]. Am J Sports Med, 2018, 46(13):3155-3164.
[42]
Sandhu H, Hackett L, Tumpalan JF, et al. Synthetic polytetrafluoroethylene patches for irreparable rotator cuff tearshow are they doing at 5 years? [J]. J Shoulder Elbow Surg, 2023,32(3):e106-e116.
[43]
Zhong Y, Jin W, Gao H, et al. A Knitted PET Patch Enhances the Maturation of Regenerated Tendons in Bridging Reconstruction of Massive Rotator Cuff Tears in a Rabbit Model [J]. Am J Sports Med, 2023, 51(4):901-911.
[44]
Meyer DC, Bachmann E, Darwiche S, et al. Rotator Cuff Repair and Overlay Augmentation by Direct Interlocking of a Nonwoven Polyethylene Terephthalate Patch Into the Tendon:Evaluation in an Ovine Model [J]. Am J Sports Med Medicine, 2023, 51(12):3235-3242.
[45]
Cowling P, Hackney R, Dube B, et al. The use of a synthetic shoulder patch for large and massive rotator cuff tears - a feasibility study [J]. BMC Musculoskelet Disord, 2020, 21(1):213.
[46]
Prabhath A, Vernekar VN, Vasu V, et al. Kinetic degradation and biocompatibility evaluation of polycaprolactone-based biologics delivery matrices for regenerative engineering of the rotator cuff [J].J Biomed Mater Res A, 2021, 109(11):2137-2153.
[47]
Cole BJ, Gomoll AH, Yanke A, et al. Biocompatibility of a polymer patch for rotator cuff repair [J]. Knee Surg Sports Traumatol Arthrosc, 2007, 15(5):632-637.
[48]
Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch:preliminary results at 12 months' follow-up [J]. J Shoulder Elbow Surg, 2011, 20(5):788-794.
[49]
Srikumaran U, Russo R, Familiari F. Subacromial Balloon Spacer for Massive Irreparable Rotator Cuff Tears [J]. Arthroscopy, 2023,39(3):576-577.
[50]
Verma N, Srikumaran U, Roden CM, et al. InSpace Implant Compared with Partial Repair for the Treatment of Full-Thickness Massive Rotator Cuff Tears:A Multicenter, Single-Blinded,Randomized Controlled Trial [J]. J Bone Joint Surg Am, 2022,104(14):1250-1262.
[51]
Metcalfe A, Parsons H, Parsons N, et al. Subacromial balloon spacer for irreparable rotator cuff tears of the shoulder (START:REACTS):a group-sequential, double-blind, multicentre randomised controlled trial [J]. Lancet, 2022, 399(10339):1954-1963.
[52]
Zhao S, Xie X, Pan G, et al. Healing improvement after rotator cuff repair using gelatin-grafted poly(L-lactide) electrospun fibrous membranes [J]. J Surg Res, 2015, 193(1):33-42.
[53]
Willbold E, Wellmann M, Welke B, et al. Possibilities and limitations of electrospun chitosan-coated polycaprolactone grafts for rotator cuff tear repair [J]. J Tissue Eng Regen Med, 2020, 14(1):186-197.
[54]
Gniesmer S, Brehm R, Hoffmann A, et al. In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber [J]. J Tissue Eng Regen Med,2019, 13(7):1190-1202.
[55]
Romeo A, Easley J, Regan D, et al. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold:a biomechanical and histologic analysis in sheep [J]. J Shoulder Elbow Surg, 2022, 31(2):402-412.
[56]
Liu C, Jiang S, Wu Y, et al. The Regenerative Role of Gelatin in PLLA Electrospun Membranes for the Treatment of Chronic Massive Rotator Cuff Injuries [J]. Macromol Biosci, 2022, 22(1):e2100281.
[57]
Reifenrath J, Wellmann M, Kempfert M, et al. TGF-β3 Loaded Electrospun Polycaprolacton Fibre Scaffolds for Rotator Cuff Tear Repair:An in Vivo Study in Rats [J]. Int J Mol Sci, 2020, 21(3):1046.
[58]
Su W, Wang Z, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane [J]. Int J Nanomedicine, 2019, 14:1835-1847.
[59]
Sun Y , Han F , Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear [J]. J Mater Chem B, 2016, 4(45):7259-7269.
[60]
Wang L, Zhu T, Kang Y, et al. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair [J]. Bioact Mater, 2022, 16:149-161.
[61]
Pomeraniec L, Benayahu D. Mesenchymal Cell Growth and Differentiation on a New Biocomposite Material:A Promising Model for Regeneration Therapy [J]. Biomolecules, 2020, 10(3):458.
[62]
Benayahu D, Pomeraniec L, Shemesh S, et al. Biocompatibility of a Marine Collagen-Based Scaffold In Vitro and In Vivo [J]. Mar Drugs, 2020, 18(8):420.
[63]
Arvinius C, Civantos A, Rodríguez-Bobada C, et al. Enhancement of in vivo supraspinatus tendon-to-bone healing with an alginatechitin scaffold and rhBMP-2 [J]. Injury, 2021, 52(1):78-84.
[64]
Yoon JP, Kim DH, Min SG, et al. Effects of a graphene oxidealginate sheet scaffold on rotator cuff tendon healing in a rat model [J]. J Orthop Surg (Hong Kong), 2022, 30(3):10225536221125950.
[65]
Vonhoegen J, John D, Hägermann C. Osteoconductive resorption characteristics of a novel biocomposite suture anchor material in rotator cuff repair [J]. J Orthop Surg Res, 2019, 14(1):12.
[66]
Pill SG, McCallum J, Tolan SJ, et al. Regenesorb and polylactic acid hydroxyapatite anchors are associated with similar osseous integration and rotator cuff healing at 2 years [J]. J Shoulder Elbow Surg, 2021, 30(7S):S27-S37.
[1] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[2] 康婵娟, 张海涛, 翟静洁. 胰管支架置入术治疗急性胆源性胰腺炎的效果及对患者肝功能、炎症因子水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 667-670.
[3] 刘柏隆, 周祥福. 经阴道膀胱膨出前盆补片修补术 + 阴道后壁修补术[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 128-128.
[4] 李佳伟, 庞建智, 闫鹏宇, 卫阳兵, 杨晓峰. 术中输尿管识别技术研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 520-524.
[5] 曹能琦, 张恒, 郑立锋, 陶庆松, 嵇振岭. Ad-Hoc 自裁剪补片用于造口旁疝Sugarbaker 修补术[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 620-623.
[6] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[7] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[8] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[9] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[10] 马振威, 宋润夫, 王兵. ERCP胆道内支架与骑跨十二指肠乳头支架置入治疗不可切除肝门部胆管癌疗效的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 807-812.
[11] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[12] 石阳, 于剑锋, 曹可, 翟志伟, 叶春祥, 王振军, 韩加刚. 可扩张金属支架置入联合新辅助化疗治疗完全梗阻性左半结肠癌围手术期并发症分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 464-471.
[13] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[14] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要