[1] |
马秉贤,张永,包呼日查,等.基于CT 三维模型分析肩胛下肌腱损伤患者喙突形态和位置的研究[J/CD].中华肩肘外科电子杂志, 2021, 9(3):229-235.
|
[2] |
陈宇琦,张磊,石慧生,等. 肩袖损伤关节镜下缝合修复术后再撕裂的风险因素分析 [J/CD]. 中华肩肘外科电子杂志, 2022,10(1):7-13.
|
[3] |
Parsons IM, Apreleva M, Fu FH, et al. The effect of rotator cuff tears on reaction forces at the glenohumeral joint [J]. J Orthop Res,2002, 20(3):439-446.
|
[4] |
Oh JH, McGarry MH, Jun BJ, et al. Restoration of shoulder biomechanics according to degree of repair completion in a cadaveric model of massive rotator cuff tear:importance of margin convergence and posterior cuff fixation [J]. Am J Sports Med,2012, 40(11):2448-2453.
|
[5] |
Deymier AC, An Y, Boyle JJ, et al. Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater [J]. Acta Biomater,2017, 56:25-35.
|
[6] |
Li Y, Zhou M, Zheng W, et al. Scaffold-based tissue engineering strategies for soft-hard interface regeneration [J]. Regen Biomater,2023, 10:rbac091.
|
[7] |
Killian ML, Cavinatto L, Galatz LM, et al. The role of mechanobiology in tendon healing [J]. J Shoulder Elbow Surg,2012, 21(2):228-237.
|
[8] |
Ricard-Blum S. The collagen family [J]. Cold Spring Harb Perspect Biol, 2011, 3(1):a004978.
|
[9] |
Zhu M, Tay ML, Callon K, et al. Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model [J]. J Shoulder Elbow Surg, 2019, 28(5):949-958.
|
[10] |
Hurley ET, Crook BS, Danilkowicz RM, et al. Acellular Collagen Matrix Patch Augmentation of Arthroscopic Rotator Cuff Repair Reduces Re-Tear Rates:A Meta-Analysis of Randomized Control Trials [J]. Arthroscopy, 2023:S0749-8063(23)00801-0.
|
[11] |
Kim H, Cho YS, Jung Y, et al. Effect of Porcine-Derived Absorbable Patch-Type Atelocollagen for Arthroscopic Rotator Cuff Repair:A Prospective Randomized Controlled Trial [J]. Am J Sports Med,2024, 52(6):1439-1448.
|
[12] |
Aldhafian OR, Choi KH, Cho HS, et al. Outcome of intraoperative injection of collagen in arthroscopic repair of full-thickness rotator cuff tear:a retrospective cohort study [J]. J Shoulder Elbow Surg,2023, 32(9):e429-e436.
|
[13] |
Thangarajah T, Ling FK, Lo IK. Isolated Bioinductive Arthroscopic Repair of Partial-Thickness Rotator Cuff Tears Using a Resorbable Collagen Implant [J]. JBJS Essent Surg Tech, 2022, 12(1):e21.00008.
|
[14] |
Ruiz Ibán MÁ, García Navlet M, Moros Marco S, et al.Augmentation of a Transosseous-Equivalent Repair in Posterosuperior Nonacute Rotator Cuff Tears With a Bioinductive Collagen Implant Decreases the Retear Rate at 1 Year:A Randomized Controlled Trial [J]. Arthroscopy, 2024, 40(6):1760-1773.
|
[15] |
Zhang T, Ajayi A, Hajjar M, et al. Arthroscopic Repair of Retracted Large and Massive Rotator Cuff Tears With and Without Augmentation With a Bio-Inductive Collagen Implant Reveals Substantial and Comparable Clinical Improvement [J].Arthroscopy, 2024, 40(5):1434-1442.
|
[16] |
Qian S, Wang Z, Zheng Z, et al. A Collagen and Silk Scaffold for Improved Healing of the Tendon and Bone Interface in a Rabbit Model [J]. Med Sci Monit, 2019, 25:269-278.
|
[17] |
Cai YZ, Zhang C, Jin RL, et al. Arthroscopic Rotator Cuff Repair With Graft Augmentation of 3-Dimensional Biological Collagen for Moderate to Large Tears:A Randomized Controlled Study [J]. Am J Sports Med, 2018, 46(6):1424-1431.
|
[18] |
Yamaura K, Mifune Y, Inui A, et al. Novel therapy using a fish scale collagen scaffold for rotator cuff healing in rat models [J]. J Shoulder Elbow Surg, 2022, 31(12):2629-2637.
|
[19] |
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials [J]. Mar Drugs, 2023, 21(6):353.
|
[20] |
Kim DH, Min SG, Yoon JP, et al. Mechanical Augmentation With Absorbable Alginate Sheet Enhances Healing of the Rotator Cuff[J]. Orthopedics, 2019, 42(1):e104-e110.
|
[21] |
Yoon JP, Lee CH, Jung JW, et al. Sustained Delivery of Transforming Growth Factor β1 by Use of Absorbable Alginate Scaffold Enhances Rotator Cuff Healing in a Rabbit Model [J].Am J Sports Med, 2018, 46(6):1441-1450.
|
[22] |
Julia P, Kelly H, Deepika D. Comprehensive review on pretreatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications [J].Green Chem, 2022, 24(18):6790-6809.
|
[23] |
Funakoshi T, Majima T, Suenaga N, et al. Rotator cuff regeneration using chitin fabric as an acellular matrix [J]. J Shoulder Elbow Surg, 2006, 15(1):112-118.
|
[24] |
Nuss CA, Huegel J, Boorman-Padgett JF, et al. Poly-N-Acetyl Glucosamine (sNAG) Enhances Early Rotator Cuff Tendon Healing in a Rat Model [J]. Ann Biomed Eng, 2017, 45(12):2826-2836.
|
[25] |
Fang F, Linstadt RTH, Genin GM, et al. Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [J]. Adv Healthc Mater, 2022, 11(10):e2102344.
|
[26] |
Mano JF, Reis RL. Osteochondral defects:present situation and tissue engineering approaches [J]. J Tissue Eng Regen Med, 2007,1(4):261-273.
|
[27] |
McCarron JA, Milks RA, Chen X, et al. Improved timezero biomechanical properties using poly-L-lactic acid graft augmentation in a cadaveric rotator cuff repair model [J]. J Shoulder Elbow Surg, 2010, 19(5):688-696.
|
[28] |
Proctor CS. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device [J]. J Shoulder Elbow Surg, 2014, 23(10):1508-1513.
|
[29] |
Haim Zada M, Kumar A, Elmalak O, et al. Biodegradable implantable balloons:Mechanical stability under physiological conditions [J]. J Mech Behav Biomed Mater, 2019, 100:103404.
|
[30] |
Haim Zada M, Kumar A, Elmalak O, et al. In vitro and in vivo degradation behavior and the long-term performance of biodegradable PLCL balloon implants [J]. Int J Pharm, 2020, 574:118870.
|
[31] |
Félix Lanao RP, Jonker AM, Wolke JG, et al. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration [J]. Tissue Eng Part B Rev, 2013, 19(4):380-390.
|
[32] |
Taylor BL, Kim DH, Huegel J, et al. Localized delivery of ibuprofen via a bilayer delivery system (BiLDS) for supraspinatus tendon healing in a rat model [J]. J Orthop Res, 2020, 38(11):2339-2349.
|
[33 |
] Chen P, Cui L, Fu SC, et al. The 3D-Printed PLGA Scaffolds Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Augment the Healing of Rotator Cuff Repair in the Rabbits [J].Cell Transplant, 2020, 29:963689720973647.
|
[34] |
Chen P, Cui L, Chen G, et al. The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair [J]. Int J Biol Macromol,2019, 138:79-88.
|
[35] |
Yokoya S, Mochizuki Y, Nagata Y, et al. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model [J]. Am J Sports Med, 2008, 36(7):1298-1309.
|
[36] |
Du C, Wu R, Yan W, et al. Ultrasound-Controlled Delivery of Growth Factor-Loaded Cerasomes Combined with Polycaprolactone Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells for Biomimetic Tendon-to-Bone Interface Engineering [J]. ACS Appl Mater Interfaces, 2024, 16(1):292-304.
|
[37] |
Kim W, Kim GE, Attia Abdou M, et al. Tendon-Inspired Nanotopographic Scaffold for Tissue Regeneration in Rotator Cuff Injuries [J]. ACS Omega, 2020, 5(23):13913-13925.
|
[38] |
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials, 2000, 21(23):2335-2346.
|
[39] |
Okamura K, Makihara T. Cable Graft:Simple Superior Capsule Reconstruction Technique for Irreparable Rotator Cuff Tear Using a Teflon Patch [J]. Arthrosc Tech, 2020, 9(4):e575-e580.
|
[40] |
Smolen D, Haffner N, Mittermayr R, et al. Application of a new polyester patch in arthroscopic massive rotator cuff repair-a prospective cohort study [J]. J Shoulder Elbow Surg, 2020, 29(1):e11-e21.
|
[41] |
Seker V, Hackett L, Lam PH, et al. Evaluating the Outcomes of Rotator Cuff Repairs With Polytetrafluoroethylene Patches for Massive and Irreparable Rotator Cuff Tears With a Minimum 2-Year Follow-up [J]. Am J Sports Med, 2018, 46(13):3155-3164.
|
[42] |
Sandhu H, Hackett L, Tumpalan JF, et al. Synthetic polytetrafluoroethylene patches for irreparable rotator cuff tearshow are they doing at 5 years? [J]. J Shoulder Elbow Surg, 2023,32(3):e106-e116.
|
[43] |
Zhong Y, Jin W, Gao H, et al. A Knitted PET Patch Enhances the Maturation of Regenerated Tendons in Bridging Reconstruction of Massive Rotator Cuff Tears in a Rabbit Model [J]. Am J Sports Med, 2023, 51(4):901-911.
|
[44] |
Meyer DC, Bachmann E, Darwiche S, et al. Rotator Cuff Repair and Overlay Augmentation by Direct Interlocking of a Nonwoven Polyethylene Terephthalate Patch Into the Tendon:Evaluation in an Ovine Model [J]. Am J Sports Med Medicine, 2023, 51(12):3235-3242.
|
[45] |
Cowling P, Hackney R, Dube B, et al. The use of a synthetic shoulder patch for large and massive rotator cuff tears - a feasibility study [J]. BMC Musculoskelet Disord, 2020, 21(1):213.
|
[46] |
Prabhath A, Vernekar VN, Vasu V, et al. Kinetic degradation and biocompatibility evaluation of polycaprolactone-based biologics delivery matrices for regenerative engineering of the rotator cuff [J].J Biomed Mater Res A, 2021, 109(11):2137-2153.
|
[47] |
Cole BJ, Gomoll AH, Yanke A, et al. Biocompatibility of a polymer patch for rotator cuff repair [J]. Knee Surg Sports Traumatol Arthrosc, 2007, 15(5):632-637.
|
[48] |
Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch:preliminary results at 12 months' follow-up [J]. J Shoulder Elbow Surg, 2011, 20(5):788-794.
|
[49] |
Srikumaran U, Russo R, Familiari F. Subacromial Balloon Spacer for Massive Irreparable Rotator Cuff Tears [J]. Arthroscopy, 2023,39(3):576-577.
|
[50] |
Verma N, Srikumaran U, Roden CM, et al. InSpace Implant Compared with Partial Repair for the Treatment of Full-Thickness Massive Rotator Cuff Tears:A Multicenter, Single-Blinded,Randomized Controlled Trial [J]. J Bone Joint Surg Am, 2022,104(14):1250-1262.
|
[51] |
Metcalfe A, Parsons H, Parsons N, et al. Subacromial balloon spacer for irreparable rotator cuff tears of the shoulder (START:REACTS):a group-sequential, double-blind, multicentre randomised controlled trial [J]. Lancet, 2022, 399(10339):1954-1963.
|
[52] |
Zhao S, Xie X, Pan G, et al. Healing improvement after rotator cuff repair using gelatin-grafted poly(L-lactide) electrospun fibrous membranes [J]. J Surg Res, 2015, 193(1):33-42.
|
[53] |
Willbold E, Wellmann M, Welke B, et al. Possibilities and limitations of electrospun chitosan-coated polycaprolactone grafts for rotator cuff tear repair [J]. J Tissue Eng Regen Med, 2020, 14(1):186-197.
|
[54] |
Gniesmer S, Brehm R, Hoffmann A, et al. In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber [J]. J Tissue Eng Regen Med,2019, 13(7):1190-1202.
|
[55] |
Romeo A, Easley J, Regan D, et al. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold:a biomechanical and histologic analysis in sheep [J]. J Shoulder Elbow Surg, 2022, 31(2):402-412.
|
[56] |
Liu C, Jiang S, Wu Y, et al. The Regenerative Role of Gelatin in PLLA Electrospun Membranes for the Treatment of Chronic Massive Rotator Cuff Injuries [J]. Macromol Biosci, 2022, 22(1):e2100281.
|
[57] |
Reifenrath J, Wellmann M, Kempfert M, et al. TGF-β3 Loaded Electrospun Polycaprolacton Fibre Scaffolds for Rotator Cuff Tear Repair:An in Vivo Study in Rats [J]. Int J Mol Sci, 2020, 21(3):1046.
|
[58] |
Su W, Wang Z, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane [J]. Int J Nanomedicine, 2019, 14:1835-1847.
|
[59] |
Sun Y , Han F , Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear [J]. J Mater Chem B, 2016, 4(45):7259-7269.
|
[60] |
Wang L, Zhu T, Kang Y, et al. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair [J]. Bioact Mater, 2022, 16:149-161.
|
[61] |
Pomeraniec L, Benayahu D. Mesenchymal Cell Growth and Differentiation on a New Biocomposite Material:A Promising Model for Regeneration Therapy [J]. Biomolecules, 2020, 10(3):458.
|
[62] |
Benayahu D, Pomeraniec L, Shemesh S, et al. Biocompatibility of a Marine Collagen-Based Scaffold In Vitro and In Vivo [J]. Mar Drugs, 2020, 18(8):420.
|
[63] |
Arvinius C, Civantos A, Rodríguez-Bobada C, et al. Enhancement of in vivo supraspinatus tendon-to-bone healing with an alginatechitin scaffold and rhBMP-2 [J]. Injury, 2021, 52(1):78-84.
|
[64] |
Yoon JP, Kim DH, Min SG, et al. Effects of a graphene oxidealginate sheet scaffold on rotator cuff tendon healing in a rat model [J]. J Orthop Surg (Hong Kong), 2022, 30(3):10225536221125950.
|
[65] |
Vonhoegen J, John D, Hägermann C. Osteoconductive resorption characteristics of a novel biocomposite suture anchor material in rotator cuff repair [J]. J Orthop Surg Res, 2019, 14(1):12.
|
[66] |
Pill SG, McCallum J, Tolan SJ, et al. Regenesorb and polylactic acid hydroxyapatite anchors are associated with similar osseous integration and rotator cuff healing at 2 years [J]. J Shoulder Elbow Surg, 2021, 30(7S):S27-S37.
|