切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 321 -329. doi: 10.3877/cma.j.issn.2095-5790.2023.04.005

论著

肱骨近端骨折中内侧锁定钢板重建内侧柱的有限元分析
李明震, 韩勇, 路庆森, 王甫()   
  1. 250021 济南,山东第一医科大学附属省立医院创伤急诊外科
  • 收稿日期:2023-04-18 出版日期:2023-11-05
  • 通信作者: 王甫

Finite element analysis of medial column reconstruction with medial locking plate in proximal humeral fractures

Mingzhen Li, Yong Han, Qingsen Lu, Fu Wang()   

  1. Department of Emergency Surgery for Trauma, Provinxial Hospital Affilizted with Shandong First Medical Uniwersity, Jinan 250021, China
  • Received:2023-04-18 Published:2023-11-05
  • Corresponding author: Fu Wang
引用本文:

李明震, 韩勇, 路庆森, 王甫. 肱骨近端骨折中内侧锁定钢板重建内侧柱的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(04): 321-329.

Mingzhen Li, Yong Han, Qingsen Lu, Fu Wang. Finite element analysis of medial column reconstruction with medial locking plate in proximal humeral fractures[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2023, 11(04): 321-329.

目的

采用医学图像的三维建模技术及有限元技术,比较单独使用外侧锁定钢板(lateral locking plate,LLP)及单独使用内侧锁定钢板(medial locking plate,MLP)对肱骨近端骨折内侧柱支撑的生物力学稳定性差异,从而为此类骨折的临床处理提出相关建议。

方法

通过Mimics 21.0、Geomagic Wrap 2017医学影像软件对获取的肱骨近端CT图像进行加工处理,利用Solidworks 2017造模软件设计肱骨近端的骨折缺损模型,并建立含有锁定钢板和螺钉的内固定模型。随后根据AO骨折治疗原则将内植物与已设计好的肱骨近端骨折模型进行装配,并分组:A组为LLP治疗组;B组为MLP治疗组,将以上两组模型以STEP格式导入ANSYS Workbench 2019有限元分析软件中进行网格划分后赋值计算。定义肱骨远端为完全固定,分别对A组和B组进行轴向压缩力、剪切力以及扭转力三种不同方式的载荷实验。比较两种骨折内固定模型在三种不同载荷条件下肱骨及内植物应力大小、应力分布、位移等情况。

结果

在轴向压缩、剪切、扭转三种不同载荷加载情况下,肱骨的最大应力、最大位移、内植物的最大应力、最大位移以及骨折端的相对位移B组结果均小于A组。

结论

在外侧皮质完整而内侧柱缺失的肱骨近端骨折中,MLP固定在轴向、剪切和扭转载荷下提供了优于LLP的结构稳定性,是治疗肱骨近端骨折内侧柱不稳定的有效方法,本项研究为这种新型内侧支撑技术的生物力学优势提供了证据从而为内侧柱缺失的肱骨近端骨折的手术治疗提供了更多的临床方案。

Background

Proximal humerus fractures account for about 4%-5% of systemic fractures in clinical practice, ranking third in human incidence after hip and distal radial fractures. The classification and treatment of proximal humeral fractures are varied, and the optimal treatment is still widely debated. In recent years, internal fixators have been developed due to the continuous improvement of surgical technology. Various internal fixation methods, such as percutaneous internal fixation technology, locking plates, intramedullary nails, and shoulder joint replacement, are available. Studies have confirmed that using a lateral locking plate (LLP) for proximal humeral fractures has good biomechanical properties and become a commonly used fixation method in clinical practice for proximal humeral fractures with significant efficacy. It has the advantages of a stable structure and mature technology. However, LLP has shown a high reoperation rate with the increasing use of locking plates in proximal humeral fractures. Many associated complications have begun to trouble most orthopedic doctors, such as postoperative fracture varus deformity, malunion, screw release, bone nonunion, subacromial impingement, humeral head ischemic necrosis, infection, etc. Among them, the incidence of postoperative fracture varus deformity is high. Among the factors leading to this series of postoperative complications, inadequate medial column support is widespread in proximal humerus fractures. The lack of adequate medial column support for treating proximal humeral fractures with a LLP alone has not been identified. Some scholars have proposed adding humerus talus screws to the lateral plate. In addition, they also used the bone cement filling, the combined application of anterolateral and lateral plates, and the combined application of posterior and lateral plates to address the absence of the proximal humeral medial column. However, none of these surgical methods directly support the medial humerus to improve biomechanical stability. Yu He et al. used both the LLP and the medial locking plate (MLP) to provide strong support for the medial column to enhance the stability of the fracture site and reduce varus deformity. However, this kind of double-incision surgery will inevitably cause excessive damage to the soft tissue of the shoulder joint. In addition, due to the limited space at the proximal end of the humerus, the screws inevitably interact with each other. Therefore, to reduce the damage to the soft tissue of the shoulder joint and avoid the interaction between screws, and provide direct support to the medial column, we wondered if a MLP could be used alone to treat proximal humeral fractures.

Objective

To compare the biomechanical stability of medial column support for proximal humeral fractures using LLP and MLP with three-dimensional modeling technology and finite element analysis to put forward relevant suggestions for the clinical treatment of such fractures.

Methods

The CT DICOM data of the proximal humerus were obtained and processed by Mimics 21.0 and Geomagic Wrap 2017 software. The proximal humerus fracture defect model was designed by SolidWorks 2017 software, and the internal fixation model containing the locking plate and screw was established. Subsequently, according to the principles of AO fracture treatment, the implants were assembled with the designed proximal humeral fracture model and divided into group A (LLP group) and group B (MLP group). The above two groups of models were imported into the ANSYS Workbench 2019 finite element analysis software in STEP format for mesh assignment and calculation. The distal humerus was defined as complete fixation. The axial compression, shear, and torsional forces were tested in groups A and B, respectively. The humerus and implants' stress magnitude, distribution, and displacement were compared between the two internal fixation models under three different loading conditions.

Results

Under axial compression, shear, and torsion, the maximum stress and displacement of the humerus, the maximum stress and displacement of the implant, and the relative displacement of the fracture end in group B were less than in group A.

Conclusions

In proximal humeral fractures with intact lateral cortex but absent medial column, the MLP fixation provides better structural stability than that of the LLP under axial, shear, and torsional loads, which is an effective method for the treatment of medial column instability in proximal humeral fractures. This study provides evidence for the biomechanical advantages of this new medial support technique. It thus offers additional clinical options for the surgical treatment of proximal humeral fractures with medial column loss.

图1 LLP(图A)和MLP(图B)注:LLP为外侧锁定钢板;MLP为内侧锁定钢板
图2 LLP固定肱骨近端骨折缺损模型(图A)和MLP固定肱骨近端骨折缺损模型(图B)注:LLP为外侧锁定钢板;MLP为内侧锁定钢板
表1 不同材料弹性模量及泊松比
表2 两组模型单元数及节点数
图3 设置肱骨远端固定,分别对骨折模型施加轴向力(图A)、剪切力(图B)和扭转力(图C)
图4 三种不同载荷下,A、B两组内植物应力分布情况及最大应力所出现的位置
图5 三种不同载荷下,A、B两组内植物位移分布情况及最大位移所出现的位置
图6 三种不同载荷下,A、B两组肱骨应力分布情况及最大应力所出现的位置
图7 三种不同载荷下,A、B两组肱骨位移分布情况及最大位移所出现的位置
表3 三种不同载荷下各项评价结果
图8 1名55岁男性患者摔伤致右肱骨近端二部分骨折伴肩关节脱位。术前行计算机三维成像检查显示肱骨内侧柱不稳定(图A)及肱骨外侧皮质完整(图B),通过肱骨近端内侧切口(图C)放置内侧锁定钢板(图D)
[1]
Agudelo J, Schurmann M, Stahel P ,et al.Analysis of efficacy and failure in proximal humerus fractures treated with locking plates[J]. J Orthop Trauma, 2007, 21(10): 676-681.
[2]
Plecko M, Kraus A. Internal fixation of proximal humerus fractures using the locking proximal humerus plate[J]. Oper Orthop Traumatol,2005,17(1): 25-50.
[3]
Ricchetti ET, Demola PM, Roman D ,et al.The use of precontoured humeral locking plates in the management of displaced proximal humerus fracture[J]. J Am Acad Orthop Surg, 2009, 17(9):582-590.
[4]
Chen H, Yin P, Wang S ,et al.The Augment of the Stability in Locking Compression Plate with Intramedullary Fibular Allograft for Proximal Humerus Fractures in Elderly People[J]. Bio Med Res Int, 2018, 2018:1-8.
[5]
Katthagen JC, Schwarze M, Meyer-Kobbe J ,et al.Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures[J]. Clin Biomech, 2014, 29(7):735-741.
[6]
Sproul RC, Iyengar JJ, Devcic Z ,et al.A systematic review of locking plate fixation of proximal humerus fractures[J]. Injury, 2011, 42(4):408-413.
[7]
Namdari S, Voleti PB, Mehta S .Evaluation of the osteoporotic proximal humeral fracture and strategies for structural augmentation during surgical treatment[J]. J Shoulder Elbow Surg, 2012, 21(12):1787-1795.
[8]
He Y,He J,Wang F,et al.Application of Additional Medial Plate in Treatment of Proximal Humeral Fractures With Unstable Medial Column: A Finite Element Study and Clinical Practice[J].Medicine, 2015, 94(41):e1775.
[9]
Sanders BS, Bullington AB, McGillivary GR, et al. Biomechanical evaluation of locked plating in proximal humeral fractures[J]. J Shoulder Elbow Surg,2007,16(2): 229-234.
[10]
Wachter NJ, Krischak GD, Mentzel M ,et al.Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro[J]. Bone, 2002, 31(1):90-95.
[11]
王亚斌, 周小建, 任亚军, 等. 肱骨远端三维有限元模型的建立及生物力学分析 [J]. 中国组织工程研究与临床康复, 2011,15(22): 4002-4005.
[12]
周磊. 锁定钢板内固定联合植骨治疗肱骨近端Neer三部分骨折的三维有限元分析 [D].吉林:北华大学, 2021.
[13]
Dattani R, Smith CD, Patel VR .The venous thromboembolic complications of shoulder and elbow surgery: a systematic review[J]. Bone Joint J, 2013, 95-B(1):70-74.
[14]
刘炎, 葛鸿庆, 管华, 等. 内侧柱缺失型肱骨近端骨折不同固定方式的有限元分析 [J]. 中国组织工程研究, 2020, 24(9): 1384-1389.
[15]
Charalambous CP, Siddique I, Valluripalli K ,et al.Proximal humeral internal locking system (PHILOS) for the treatment of proximal humeral fractures[J]. Arch Orthop Traum Surg, 2007, 127(3):205-210.
[16]
Hessmann M, Gotzen L, Gehling H ,et al.Operative treatment of displaced proximal humeral fractures: two-year results in 99 cases[J]. Acta Chir Belg, 1998, 98(5):212-219.
[17]
Aksu N, Göğüş A, Kara AN, et al. Complications encountered in proximal humerus fractures treated with locking plate fixation[J]. Acta Orthop Traumatol Turc, 2010, 44(2): 89-96.
[18]
Geiger EV, Maier M, Kelm A, et al. Functional outcome and complications following PHILOS plate fixation in proximal humeral fractures[J]. Acta Orthop Traumatol Turc,2010,44(1): 1-6.
[19]
Owsley KC, Gorczyca JT .Fracture displacement and screw cutout after open reduction and locked plate fixation of proximal humeral fractures [corrected][J]. J Bone Joint Surg Am, 2008, 90(2):233.
[20]
Wähnert D, Hofmann-Fliri L, Richards RG,et al.Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones[J]. Medicine (Baltimore),2014 ,93(23):e166.
[21]
Xiang H, Wang Y, Yang Y, et al. Anatomical study for the treatment of proximal humeral fracture through the medial approach[J]. J Orthop Surg Res, 2022, 17(1): 35.
[1] 李立, 王红莉, 常红, 张艳. 肱骨近端骨折术后功能康复策略现状及新理念下的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(03): 284-287.
[2] 左楠, 刘岩, 孙大辉, 刘哲闻, 杨光. 胸大肌三角肌入路与经三角肌外侧入路治疗肱骨近端骨折的疗效分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 252-257.
[3] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[4] 车娟, 刘俊阳. 肱骨近端骨折围手术期深静脉血栓发生因素分析[J]. 中华肩肘外科电子杂志, 2023, 11(02): 146-149.
[5] 张晓萌, 杨杰, 刘海, 王艳华, 张一翀, 张立佳, 熊晨, 唐缪田, 张殿英. 科研创新就在我们身边[J]. 中华肩肘外科电子杂志, 2023, 11(01): 1-6.
[6] 刘兵, 马翔宇, 杨超, 周大鹏. 应用Philos钢板联合个体化髓内解剖型骨水泥占位器治疗老年骨质疏松性肱骨近端骨折的临床疗效[J]. 中华肩肘外科电子杂志, 2022, 10(04): 293-299.
[7] 丁小方, 杨黎黎, 周海涛, 纪坤羽, 杨鹏杰, 杨坤, 吕昊润, 王元利, 付中国. 基于"悬臂-杠杆重建-不稳定"理论的老年肱骨近端粉碎骨折术后康复策略探讨[J]. 中华肩肘外科电子杂志, 2022, 10(03): 232-238.
[8] 王晨, 潘海乐. 肩袖三维有限元模型建立及力学分析[J]. 中华肩肘外科电子杂志, 2022, 10(03): 221-225.
[9] 程邦君, 黄燕峰, 罗轶, 何耀华. 两种手术方法治疗Neer Ⅲ型肱骨近端骨折的临床研究[J]. 中华肩肘外科电子杂志, 2021, 09(04): 335-340.
[10] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[11] 朱燕宾, 程晓东, 王宇钏, 王忠正, 李泳龙, 李会杰, 王娟, 吕红芝, 陈伟, 张英泽. 股骨头部分置换术精准微创治疗中老年ARCO Ⅲ期股骨头缺血坏死的有限元分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 257-259.
[12] 金万通, 薛海鹏, 周大鹏, 刘兵, 纪振钢, 马翔宇, 杨超, 张昊, 韩宁, 宗宇宁, 张咏晧, 马泽方. 3D打印结合PMMA骨水泥髓内支撑技术在老年肱骨近端骨质疏松性骨折中的应用[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 276-284.
[13] 杨良栋, 张华泽, 何举仁, 高艳刚, 李栋. 锁定钢板与交锁髓内钉固定治疗老年Neer分型2、3部分肱骨近端骨折的疗效比较[J]. 中华老年骨科与康复电子杂志, 2022, 08(02): 96-103.
[14] 杜兵, 马腾, 路遥, 张聪明, 许毅博, 黄强, 姬帅, 李明, 任程, 王谦, 张堃, 李忠. 新型股骨颈内固定系统与3枚空心钉加内侧钢板固定青壮年Pauwels Ⅲ型股骨颈骨折的有限元分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 333-338.
[15] 赵阔, 王忠正, 王宇钏, 张浚哲, 郭家良, 郑占乐, 陈伟, 张英泽. 双反牵引复位器联合MIPO技术治疗肱骨近端骨折的初步应用[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 321-325.
阅读次数
全文


摘要