切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2022, Vol. 10 ›› Issue (03) : 221 -225. doi: 10.3877/cma.j.issn.2095-5790.2022.03.006

论著

肩袖三维有限元模型建立及力学分析
王晨1, 潘海乐1,()   
  1. 1. 150081 哈尔滨医科大学附属第二医院骨外科
  • 收稿日期:2022-03-09 出版日期:2022-08-05
  • 通信作者: 潘海乐

Establishment and mechanical analysis of rotator cuff three-dimensional finite element model

Chen Wang1, Haile Pan1,()   

  1. 1. Department of Orthopedic Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
  • Received:2022-03-09 Published:2022-08-05
  • Corresponding author: Haile Pan
引用本文:

王晨, 潘海乐. 肩袖三维有限元模型建立及力学分析[J/OL]. 中华肩肘外科电子杂志, 2022, 10(03): 221-225.

Chen Wang, Haile Pan. Establishment and mechanical analysis of rotator cuff three-dimensional finite element model[J/OL]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2022, 10(03): 221-225.

目的

建立完整的肩关节及其肩袖组织的三维有限元模型,并做相关力学分析。

方法

将1名健康成年人肩关节的CT 、MRI扫描数据依次导入Mimics 21.0、3-Matic 11.0、Geomagic studio 2012完成模型的构建,再导入到Hypermesh 2019中完成材料赋予、网格划分、施加载荷和边界条件等前处理操作,最后导入Abaqus 6.14软件中模拟肩关节外展5°、10°、15°、20°、25°、30°时,肩袖各组织应力的特点。

结果

建立的肩袖三维有限元模型具有完整的结构,高度还原了肩袖各组织形态。在力学分析结果中,肩关节外展时冈上肌受力最大,证明了该模型的有效性。

结论

创建方法切实可行,完整地建立了肩袖的三维有限元模型,可用于肩袖相关的生物力学研究。

Background

The rotator cuff, also known as the rotator sleeve, consists of the supraspinatus muscle, infraspinatus muscle, teres minor muscle attached to the greater tubercle, and subscapularis muscle attached to the lesser tubercle. It forms a sleeve structure at the anatomical neck of the humerus head. The rotator cuff is an essential stable structure of the shoulder joint. Rotator cuff tear will weaken or even lose the stability of the shoulder joint. It can cause chronic shoulder pain, the third most common symptom in the systemic musculoskeletal system after back and neck pain. According to the study of Minagawa et al, in a group of people with an average age of 69.5 years who underwent health examination, the incidence of rotator cuff tears reached 22.1%. The study of rotator cuff biomechanics is of great value for understanding the occurrence, development mechanism, and surgical treatment of rotator cuff injury. Because measurement techniques and ethical issues limit traditional biomechanical experiments, the stress distribution of rotator cuff under physiological and pathological conditions is almost impossible to obtain. In recent years, with the continuous development of computer technology, software development, and image processing, the rotator cuff’ finite element model is becoming increasingly mature, becoming an indispensable tool for biomechanical research of the rotator cuff.

Objective

To establish a complete three-dimensional finite element model of the shoulder joint and rotator cuff tissue and to conduct the related mechanical analysis.

Methods

A healthy adult shoulder joint's CT and MRI scan data were successfully imported into Mimics 21.0, 3-Matic 11.0, and Geomagic Studio 2012 software to complete the model construction. Then it was imported into the Hypermesh 2019 software to conduct pre-processing operations such as material assignment, mesh division, load application, and boundary conditions. Finally, it was imported into Abaqus 6.14 software to simulate the stress characteristics of rotator cuff tissues at shoulder abduction of 5°, 10°, 15°, 20°, 25°, and 30°.

Results

The 3D finite element model of the rotator cuff has a complete structure and highly restores the tissue morphology of the rotator cuff. The mechanical analysis results show that the supraspinatus muscle has the largest force during shoulder abduction, which proves the model's validity.

Conclusion

The method is feasible, and the 3D finite element model of the rotator cuff is established completely, which can be used in the biomechanical research of rotator cuff.

图1 Mimics软件中打开肩关节CT图像
图2 提取CT图像中的所有骨性结构
图3 提取出目标肩关节骨性结构
图4 肩关节最终模型
图5 处理后的肩关节模型 图A:肩关节正面观;图B:肩关节背面观
表1 模型的材料属性和泊松比
图6 完整肩袖有限元模型 图A:肩关节正面观;图B:肩关节背面观
表2 各部位单元数和节点数
图7 肩关节外展过程中肩袖应力分布云图(背面观) 图A:肩关节外展5°;图B:肩关节外展10°;图C:肩关节外展15°;图D:肩关节外展20°;图E:肩关节外展25°;图F:肩关节外展30°
图8 肩关节外展过程中肩袖应力分布云图(正面观) 图A:肩关节外展5°;图B:肩关节外展10°;图C:肩关节外展15°;图D:肩关节外展20°;图E:肩关节外展25°;图F:肩关节外展30°
表3 不同工况下肩袖组织的峰值应力比较(MPa)
[1]
Gomoll AH,Katz JN,Warner JJP,et al.Rotator cuff disorders: Recognition and management among patients with shoulder pain[J]. Arthritis Rheum,2004,50(12): 3751-3761.
[2]
Minagawa H,Yamamoto N,Abe H,et al.Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village[J] . J Orthop,2013,10(1):8-12.
[3]
李立,李世伟,汪方,等.肱骨外展动作中肩袖生物力学的有限元分析[J/CD] .中华肩肘外科电子杂志,2019,7(4):301-307.
[4]
张震,董跃福,苏宏飞,等.轻度OA膝关节有限元解剖模型的构建及其力学分析[J] .中国矫形外科杂志,2020,28(5):439-443.
[5]
李钟鑫,刘璐,高丽兰,等.人体全膝关节精细有限元模型建立及有效性验证[J] .生物医学工程与临床,2020,24(5):501-507.
[6]
Wu LJ.Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures[J] . Clin Biomech (Bristol, Avon),2007, 22(2):221-229.
[7]
Duprey S,Bruyere K,Verriest JP.Human shoulder response to side impacts: a finite element study[J] . Comput Methods Biomech Biomed Engin,2007,10(5): 361-370.
[8]
Cutti AG, (DirkJan) Veeger HEJ.Shoulder biomechanics: today's consensus and tomorrow's perspectives[J] .Med Biol Eng Comput, 2009, 47(5):463-466.
[9]
Funakoshi T,Suenaga N,Sano H,et al.In vitro and finite element analysis of a novel rotator cuff fixation technique[J] . J Shoulder Elbow Surg,2008, 17(6):986-992.
[10]
Wakabayashi I, Itoi E,Sano H,et al. Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis[J] . J Shoulder Elbow Surg, 2003, 12(6):612-617.
[11]
Inoue A, Chosa E, Goto K, et al.Nonlinear stress analysis of the supraspinatus tendon using three-dimensional finite element analysis[J] . Knee Surg Sports Traumatol Arthrosc, 2013, 21(5):1151-1157.
[12]
Sano H, Takahashi A, Chiba D, et al.Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method[J] . Knee Surg Sports Traumatol Arthrosc, 2013, 21(8):1777-1782.
[13]
Jang SW, Yoo YS, Lee HY, et al. Stress Distribution in Superior Labral Complex and Rotator Cuff During In Vivo Shoulder Motion: A Finite Element Analysis[J] . Arthroscopy, 2015, 31(11):2073-2081.
[14]
朱鸣镝,汤锦波,高永静,等.冈上肌腱在肩关节外展时运动轨迹研究及临床意义探讨[J] .中国临床解剖学杂志, 2003(4): 375-378.
[1] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[2] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[3] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[4] 张琛朋, 王靖, 曾塬杰, 高鹏, 陈昕彤. 反式全肩关节置换术的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 373-376.
[5] 李婉玉, 张艳, 李冰冰. 肩袖损伤术后恐动症的研究现状[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 369-372.
[6] 胡子豪, 王喆, 陈建海, 齐岩松, 徐永胜. 聚合物材料在肩袖损伤治疗中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 362-368.
[7] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[8] 谢娜, 纪东旭, 刘晨, 徐峰. 肩肱距离在肩痛患者诊断和治疗决策中的作用:一项回顾性的病例对照研究[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 326-331.
[9] 严肃, 束昊, 吉同岳, 孙鲁宁. 肱二头肌长头腱切断与保留对中老年患者的中、小型退变性肩袖撕裂修补术后疗效影响[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 309-318.
[10] 王友健, 陶然, 陆跃, 马洪冬. 退行性中、小型肩袖撕裂两种临床治疗效果对比[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 302-308.
[11] 冯亚飞, 唐诗添, 唐福宽, 周亮. 关节镜下mLSRS 技术及双排缝线桥技术治疗大型肩袖撕裂的疗效及预后分析[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 295-301.
[12] 曲洋, 蒋浩然, 邢博涵, 张蒙, 张培训. 肩袖损伤的治疗进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 289-291.
[13] 王鸿禹, 王飞, 高广涵, 郑子天, 薛庆云. 肱骨大结节骨微结构对肩袖修复影响的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 281-285.
[14] 郁凯, 曾保起, 杨剑, 杨杰, 张殿英, 孙凤. 全关节镜与切开手术治疗肩袖撕裂疗效比较的系统综述与Meta分析[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 238-245.
[15] 李彦霖, 王海程, 权元元, 张一凡, 陈伟. 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 243-250.
阅读次数
全文


摘要