[1] |
Kirkland JL, Tchkonia T, Pirtskhalava T, et al. Adipogenesis and aging: Does aging make fat go MAD?[J]. Experimental Gerontology, 2002, 37(6): 757-767.
|
[2] |
Rathi S, Taylor NF, Soo B, et al. Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology:An ultrasonographic and electromyographic study with age-matched controls[J]. J Sci Med Sport, 2018, 21(9): 885-889.
|
[3] |
Rashid MS, Cooper C, Cook J, et al. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year[J]. Acta Orthop,2017, 88(6): 606-611.
|
[4] |
Diebold G, Lam P, Walton J, et al. Relationship between age and rotator cuff retear: A study of 1,600 consecutive rotator cuff repairs[J]. J Bone Joint Surg Am, 2017, 99(14): 1198-1205.
|
[5] |
Zhang H, Wague A, Diaz A, et al. Overexpression of PRDM16 improves muscle function after rotator cuff tears[J]. J Shoulder Elbow Surg, 2024, 33(12): 2725-2733.
|
[6] |
Giri A, Freeman TH, Kim P, et al. Obesity and sex influence fatty infiltration of the rotator cuff: The rotator cuff outcomes workgroup(ROW) and multicenter orthopaedic outcomes network (MOON)cohorts[J]. J Shoulder Elbow Surg, 2022, 31(4): 726-735.
|
[7] |
Chung SW, Park H, Kwon J, et al. Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: Electrophysiological,biomechanical, and histological analyses[J]. Am J Sports Med,2016, 44(5): 1153-1164.
|
[8] |
Garcia GH, Liu JN, Wong A, et al. Hyperlipidemia increases the risk of retear after arthroscopic rotator cuff repair[J]. J Shoulder Elbow Surg, 2017, 26(12): 2086-2090.
|
[9] |
Cancienne JM, Brockmeier SF, Rodeo SA, et al. Perioperative serum lipid status and statin use affect the revision surgery rate after arthroscopic rotator cuff repair[J]. Am J Sports Med, 2017, 45(13):2948-2954.
|
[10] |
Kim YK, Jung KH, Kim JW, et al. Factors affecting rotator cuff integrity after arthroscopic repair for Medium-sized or larger cuff tears: A retrospective cohort study[J]. J Shoulder Elbow Surg,2018, 27(6): 1012-1020.
|
[11] |
West R. Tobacco smoking: Health impact, prevalence, correlates and interventions[J]. Psychol Health, 2017, 32(8): 1018-1036.
|
[12] |
Al-Bashaireh AM, Haddad LG, Weaver M, et al. The effect of tobacco smoking on musculoskeletal health: A systematic review[J].J Environ Public Health, 2018, 2018: 4184190.
|
[13] |
Lundgreen K, Lian ØB, Scott A, et al. Rotator cuff tear degeneration and cell apoptosis in smokers versus nonsmokers[J].Arthroscopy, 2014, 30(8): 936-941.
|
[14] |
Park JH, Oh KS, Kim TM, et al. Effect of smoking on healing failure after rotator cuff repair[J]. Am J Sports Med, 2018, 46(12):2960-2968.
|
[15] |
Thaveepunsan S, Kosasaeng E, Fusakul Y, et al. Correlation between rotator cuff tear in thai urban elderly population and vitamin D deficiency[J]. Cureus, 2024, 16(2): e54986.
|
[16] |
Cai Y, Han Z, Cheng H, et al. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly[J]. Frontiers Immunol, 2024, 15: 1405621.
|
[17] |
Bedi A, Bishop J, Keener J, et al. Rotator cuff tears[J]. Nat Rev Dis Primers, 2024, 10(1): 8.
|
[18] |
Zhang G, Zhou X, Hu S, et al. Large animal models for the study of tendinopathy[J]. Frontiers Cell Developmental Biology, 2022,10: 1031638.
|
[19] |
Prasetia R, Purwana SZB, Lesmana R, et al. The pathology of oxidative Stress-induced autophagy in a chronic rotator cuff enthesis tear[J]. Frontiers Physiology, 2023, 14: 1222099.
|
[20] |
Kim JH, Min YK, Jang YC, et al. Serial changes of fatty degeneration and clinical outcomes after repair of medium-sized rotator cuff tears[J]. Clin Orthop Surg, 2024, 16(1): 95-104.
|
[21] |
Gladstone JN, Bishop JY, Lo IKY, et al. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome[J]. Am J Sports Med,2007, 35(5): 719-728.
|
[22] |
Feuerriegel GC, Marcus RP, Sommer S, et al. Fat fractions of the rotator cuff muscles acquired with 2-point dixon MRI: Predicting outcome after arthroscopic rotator cuff repair[J]. Investigative Radiol, 2024, 59(4): 328-336.
|
[23] |
Lansdown DA, Morrison C, Zaid MB, et al. Preoperative IDEAL(Iterative Decomposition of Echoes of Asymmetrical Length)magnetic resonance imaging rotator cuff muscle fat fractions are associated with rotator cuff repair outcomes[J]. J Shoulder Elbow Surg, 2019, 28(10): 1936-1941.
|
[24] |
Osti L, Buda M, Del Buono A. Fatty infiltration of the shoulder:Diagnosis and reversibility[J]. Muscles Ligaments Tendons J,2013, 3(4): 351-354.
|
[25] |
Shah NS, Suriel Peguero E, Umeda Y, et al. Long-term outcomes of massive rotator cuff tear repair: A systematic review[J]. HSS J,2022, 18(1): 130-137.
|
[26] |
Deniz G, Kose O, Tugay A, et al. Fatty degeneration and atrophy of the rotator cuff muscles after arthroscopic repair: Does it improve,halt or deteriorate?[J]. Archives Orthop Trauma Surg, 2014, 134(7): 985-990.
|
[27] |
Burkhart SS, Barth JRH, Richards DP, et al. Arthroscopic repair of massive rotator cuff tears with stage 3 and 4 fatty degeneration[J].Arthroscopy, 2007, 23(4): 347-354.
|
[28] |
Zhou T, Han C, Weng X. Present situation and development prospects of the diagnosis and treatment of rotator cuff tears[J].Frontiers Surg, 2023, 10: 857821.
|
[29] |
Maman E, Harris C, White L, et al. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging[J]. J Bone Joint Surg Am, 2009, 91(8):1898-1906.
|
[30] |
Kong BY, Kim SH, Kim DH, et al. Suprascapular neuropathy in massive rotator cuff tears with severe fatty degeneration in the infraspinatus muscle[J]. Bone Joint J, 2016, 98-B(11): 1505-1509.
|
[31] |
Sasaki Y, Ochiai N, Nakajima A, et al. Histological analysis and biomechanical evaluation of fatty infiltration after rotator cuff tear and suprascapular nerve injury in a rat model[J]. J Orthop Sci,2018, 23(5): 834-841.
|
[32] |
Jensen AR, Kelley BV, Mosich GM, et al. Neer Award 2018:Platelet-derived growth factor receptor α co-expression typifies a subset of platelet-derived growth factor receptor β-positive progenitor cells that contribute to fatty degeneration and fibrosis of the murine rotator Cuff[J]. J Shoulder Elbow Surg, 2018, 27(7):1149-1161.
|
[33] |
Dar A, Li A, Petrigliano FA. Lineage tracing reveals a novel PDGFRβ+ satellite cell subset that contributes to Myo-regeneration of chronically injured rotator cuff muscle[J]. Scientific Reports,2024, 14(1): 9668.
|
[34] |
Lee C, Liu M, Agha O, et al. Beige FAPs transplantation improves muscle quality and shoulder function after massive rotator cuff tears[J]. J Orthop Res, 2020, 38(5): 1159-1166.
|
[35] |
Jensen AR, Taylor AJ, Sanchez-Sotelo J. Factors influencing the reparability and healing rates of rotator cuff tears[J]. Curr Rev Musculoskelet Med, 2020, 13(5): 572-583.
|
[36] |
Feeley BT, Liu M, Ma CB, et al. Human rotator cuff tears have an endogenous, inducible stem cell source capable of improving muscle quality and function after rotator cuff repair[J]. Am J Sports Med, 2020, 48(11): 2660-2668.
|
[37] |
Otsuka T, Kan HM, Mengsteab PY, et al. Fibroblast growth factor 8b (FGF-8b) enhances myogenesis and inhibits adipogenesis in rotator cuff muscle cell populations in Vitro[J]. Proceedings National Academy Sci, 2024, 121(1): e2314585121.
|
[38] |
Liu X, Liu M, Lee L, et al. Trichostatin A regulates fibro/adipogenic progenitor adipogenesis epigenetically and reduces rotator cuff muscle fatty infiltration[J]. J Orthop Res, 2021, 39(7): 1452-1462.
|
[39] |
Papalia GF, Franceschetti E, Giurazza G, et al. MicroRNA expression changes in the development of rotator cuff tendon injuries[J]. JSES Rev Rep Tech, 2023, 3(3): 343-349.
|
[40] |
Kelley N, Khodaee M. Posterior shoulder pain and muscle wasting in an older adult[J]. Cureus, 2022, 14(9): e28850.
|
[41] |
Kang JR, Gupta R. Mechanisms of fatty degeneration in massive rotator cuff tears[J]. J Shoulder Elbow Surg, 2012, 21(2):175-180.
|
[42] |
Agha O, Diaz A, Davies M, et al. Rotator cuff tear degeneration and the role of Fibro-adipogenic Progenitors[J]. Annals New York Academy Sci, 2021, 1490(1): 13-28.
|
[43] |
Wang S, Ying JH, Xu H. Identification of diagnostic biomarkers associated with stromal and immune cell infiltration in fatty infiltration after rotator cuff tear by integrating bioinformatic analysis and machine-learning[J]. International J General Med,2022, 15: 1805-1819.
|
[44] |
Davies MR, Liu X, Lee L, et al. TGF-β small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis[J]. PloS One, 2016, 11(5): e0155486.
|
[45] |
Theret M, Rossi FMV, Contreras O. Evolving roles of muscleresident fibro-adipogenic progenitors in health, regeneration,neuromuscular disorders, and aging[J]. Frontiers Physiology,2021, 12: 673404.
|
[46] |
McClellan PE, Kesavan L, Wen Y, et al. Volumetric MicroCT intensity histograms of fatty infiltration correlate with the mechanical strength of rotator cuff repairs: An ex vivo rabbit model[J]. Clin Orthop Related Res, 2021, 479(2): 406-418.
|
[47] |
Peña-Martínez V, Meza-Camacho J, Tamez-Mata Y, et al. Proximal humeral fractures: Association between displacement and fatty degeneration of the supraspinatus muscle[J]. Archives Orthop Trauma Sur, 2024, 144(8): 3267-3273.
|
[48] |
Merlin Rajesh LLP, Radwan MM, Thankam FG, et al. Rotator cuff tendon repair after injury in hyperlipidemic swine decreases biomechanical properties[J]. J Orthop Sports Med, 2023, 5(4):398-405.
|
[49] |
Siddiqui MS, Parmar D, Shaikh F, et al. Saroglitazar improves nonalcoholic fatty liver disease and metabolic health in liver transplant recipients[J]. Liver Transplantation, 2023, 29(9):979-986.
|
[50] |
Werthel JD, Boux de Casson F, Walch G, et al. Three-dimensional muscle loss assessment: A novel computed tomography-based quantitative method to evaluate rotator cuff muscle fatty infiltration[J]. J Shoulder Elbow Surg, 2022, 31(1): 165-174.
|
[51] |
Zhang H, Wague A, Diaz A, et al. Overexpression of PRDM16 improves muscle function after rotator cuff tears[J]. J Shoulder Elbow Surg, 2024, 33(12): 2725-2733.
|
[52] |
Wang Z, Liu X, Jiang K, et al. Intramuscular brown fat activation decreases muscle atrophy and fatty infiltration and improves gait after delayed rotator cuff repair in mice[J]. Am J Sports Med,2020, 48(7): 1590-1600.
|
[53] |
Mattar LT, Popchak AJ, Musahl V, et al. Greater tuberosity morphology is altered in individuals with symptomatic isolated supraspinatus tendon tears[J]. J Shoulder Elbow Surg, 2023, 32(12): 2467-2472.
|
[54] |
Oh JH, Kim SH, Choi JA, et al. Reliability of the grading system for fatty degeneration of rotator cuff muscles[J]. Clin Orthop Related Res, 2010, 468(6): 1558-1564.
|
[55] |
Wiener SN, Seitz WH. Sonography of the shoulder in patients with tears of the rotator cuff: Accuracy and value for selecting surgical options[J]. Am J Roentgenol, 1993, 160(1): 103-107, 109-110.
|
[56] |
Liu F, Dong J, Shen WJ, et al. Detecting rotator cuff tears: a network meta-analysis of 144 diagnostic studies[J]. Orthop J Sports Med,2020, 8(2): 2325967119900356.
|
[57] |
Powell SN, Lilley BM, Peebles AM, et al. Impact of fatty infiltration of the rotator cuff on reverse total shoulder arthroplasty outcomes:A systematic review[J]. JSES Rev Rep Tech, 2022, 2(2): 125-130.
|
[58] |
Hyman SA, Wu IT, Vasquez-Bolanos LS, et al. Supraspinatus muscle architecture and physiology in a rabbit model of tenotomy and repair[J]. J Applied Physiol, 2021, 131(6): 1708-1717.
|
[59] |
Deniz G, Kose O, Tugay A, et al. Fatty degeneration and atrophy of the rotator cuff muscles after arthroscopic repair: Does it improve,halt or deteriorate?[J]. Archives Orthop Trauma Surg, 2014, 134(7): 985-990.
|
[60] |
Franceschi F, Giovannetti de Sanctis E, Gupta A, et al. Reverse shoulder arthroplasty: State-of-the-art[J]. J ISAKOS, 2023, 8(5):306-317.
|
[61] |
Guo AA, Hackett L, Murrell GAC. Stiffness and arthroscopic rotator cuff repair: A literature review[J]. Annals Joint, 2023, 8: 7.
|
[62] |
Weng PW, Chang WP. Influence of body mass index on severity of rotator cuff tears[J]. J Shoulder Elbow Surg, 2024, 33(3):648-656.
|
[63] |
Jackson GR, Bedi A, Denard PJ. Graft augmentation of repairable rotator cuff tears: An algorithmic approach based on healing rates[J].Arthroscopy, 2022, 38(7): 2342-2347.
|
[64] |
Rondon AJ, Farronato DM, Pezzulo JD, et al. Irreparable massive rotator cuff tears: Subacromial balloon surgical technique[J].Arthroscopy Techniques, 2023, 12(3): e421-e432.
|
[65] |
Wang S, Ying JH, Xu H. Identfication of diagnostic biomakersasociated with stromal and immune cll infitration in fatyinfiltration afier rotatr cuff tear by integrating bioinformaticanalyss and machinc-leaming[J]. Int J Gen Med,2022, 15:1805-1819.
|
[66] |
McClellan PE, Kesavan L, Wen Y, et al. Volumetric microct intensity histograms of fatty infiltration correlate with the mechanical strength of rotator cuff repairs: An ex vivo rabbit model[J]. Clin Orthop Related Res, 2021, 479(2): 406-418.
|