[1] |
Yoshida M, Collin P, Josseaume T, et al. Post-operative rotator cuff integrity, based on Sugayas classification, can reflect abduction muscle strength of the shoulder[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(1):161-168.
|
[2] |
McElvany MD, McGoldrick E, Gee AO, et al. Rotator cuff repair: published evidence on factors associated with repair integrity and clinical outcome[J]. Am J Sports Med, 2015, 43(2):491-500.
|
[3] |
Rossetti L, Kuntz LA, Kunold E, et al. The microstructure and micromechanics of the tendon-bone insertion[J]. Nat Mater, 2017, 16(6):664-670.
|
[4] |
Genin GM, Thomopoulos S. The tendon-to-bone attachment: unification through disarray[J]. Nat Mater, 2017, 16(6):607-608.
|
[5] |
Bunker DL, Ilie V, Ilie V, et al. Tendon to bone healing and its implications for surgery[J]. Muscles Ligaments Tendons J, 2014, 4(3):343-350.
|
[6] |
Zhang C, Liu YJ. Biomechanic and histologic analysis of fibroblastic effects of tendon-to-bone healing by transforming growth factor β1 (TGF-β1) in rotator cuff tears[J]. Acta Cir Bras, 2017, 32(12):1045-1055.
|
[7] |
Wu G, Xu PC, Wu P, et al. Advances in the treatment of rotator cuff lesions by cytokines[J]. Front Biosci (Landmark Ed), 2017, 22:516-529.
|
[8] |
Huang Y, Pan M, Shu H, et al. Vascular endothelial growth factor enhances tendon-bone healing by activating Yes-associated protein for angiogenesis induction and rotator cuff reconstruction in rats[J]. J Cell Biochem, 2020, 121(3):2343-2353.
|
[9] |
Xu Q, Sun WX, Zhang ZF. High expression of VEGFA in MSCs promotes tendon-bone healing of rotator cuff tear via microRNA-205-5p[J]. Eur Rev Med Pharmacol Sci, 2019, 23(10):4081-4088.
|
[10] |
Han B, Jones IA, Yang Z, et al. Repair of rotator cuff tendon defects in aged rats using a growth factor injectable gel scaffold[J]. Arthroscopy, 2020, 36(3):629-637.
|
[11] |
Yamakado K, Kitaoka K, Yamada H, et al. The influence of mechanical stress on graft healing in a bone tunnel[J]. Arthroscopy, 2002, 18(1):82-90.
|
[12] |
Pallotta I, Sun B, Lallos G, et al. Contributions of bone morphogenetic proteins in cardiac repair cells in three-dimensional in vitro models and angiogenesis[J]. J Tissue Eng Regen Med, 2018, 12(2):349-359.
|
[13] |
Rodeo SA. Biologic augmentation of rotator cuff tendon repair[J]. J Shoulder Elbow Surg, 2007, 16(5 Suppl):S191-197.
|
[14] |
Gonciulea AR, Jan De Beur SM. Fibroblast growth factor 23-mediated bone disease[J]. Endocrinol Metab Clin North Am, 2017, 46(1):19-39.
|
[15] |
Ide J, Kikukawa K, Hirose J, et al. The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon[J]. J Shoulder Elbow Surg, 2009, 18(3):391-398.
|
[16] |
Nourissat G, Diop A, Maurel N, et al. Mesenchymal stem cell therapy regenerates the native bone-tendon junction after surgical repair in a degenerative rat model[J]. PLoS One, 2010, 5(8):e12248.
|
[17] |
Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study[J]. Int Orthop, 2014, 38(9):1811-1818.
|
[18] |
Chen HS, Su YT, Chan TM, et al. Human adipose-derived stem cells accelerate the restoration of tensile strength of tendon and alleviate the progression of rotator cuff injury in a rat model[J]. Cell Transplant, 2015, 24(3):509-520.
|
[19] |
Kosaka M, Nakase J, Hayashi K, et al. Adipose-derived regenerative cells promote tendon-bone healing in a rabbit model[J]. Arthroscopy, 2016, 32(5):851-859.
|
[20] |
Jo CH, Chai JW, Jeong EC, et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial[J]. Stem Cells, 2018, 36(9):1441-1450.
|
[21] |
Jo CH, Chai JW, Jeong EC, et al. Intratendinous injection of mesenchymal stem cells for the treatment of rotator cuff disease: a 2-year follow-up study[J]. Arthroscopy, 2020, 36(4):971-980.
|
[22] |
Cheng B, Ge H, Zhou J, et al. TSG-6 mediates the effect of tendon derived stem cells for rotator cuff healing[J]. Eur Rev Med Pharmacol Sci, 2014, 18(2):247-251.
|
[23] |
Lui PP, Wong OT, Lee YW. Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2014, 42(3):681-689.
|
[24] |
Park GY, Kwon DR, Lee SC. Regeneration of full-thickness rotator cuff tendon tear after ultrasound-guided injection with umbilical cord blood-derived mesenchymal stem cells in a rabbit model[J]. Stem Cells Transl Med, 2015, 4(11):1344-351.
|
[25] |
Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges[J]. J Cell Biochem, 2001, 82(4):583-590.
|
[26] |
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12):4279-4295.
|
[27] |
Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J]. Nat Med, 2007, 13(10):1219-1227.
|
[28] |
Tan Q, Lui PP, Rui YF, et al. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering[J]. Tissue Eng Part A, 2012, 18(7-8):840-851.
|
[29] |
Bai L, Li D, Li J, et al. Bioactive molecules derived from umbilical cord mesenchymal stem cells[J]. Acta Histochem, 2016, 118(8):761-769.
|
[30] |
Nooeaid P, Salih V, Beier JP, et al. Osteochondral tissue engineering: scaffolds, stem cells and applications[J]. J Cell Mol Med, 2012, 16(10):2247-2270.
|
[31] |
Ferreira AM, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration[J]. Acta Biomater, 2012, 8(9):3191-3200.
|
[32] |
Van Kampen C, Arnoczky S, Parks P, et al. Tissue-engineered augmentation of a rotator cuff tendon using a reconstituted collagen scaffold: a histological evaluation in sheep[J]. Muscles Ligaments Tendons J, 2013, 3(3):229-235.
|
[33] |
Su CH, Sun CS, Juan SW, et al. Development of fungal mycelia as skin substitutes: effects on wound healing and fibroblast[J]. Biomaterials, 1999, 20(1):61-68.
|
[34] |
Funakoshi T, Majima T, Suenaga N, et al. Rotator cuff regeneration using chitin fabric as an acellular matrix[J]. J Shoulder Elbow Surg, 2006, 15(1):112-128.
|
[35] |
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration[J]. J R Soc Interface, 2007, 4(14):413-437.
|
[36] |
Proctor CS. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device[J]. J Shoulder Elbow Surg, 2014, 23(10):1508-1513.
|
[37] |
Yokoya S, Mochizuki Y, Natsu K, et al. Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model[J]. Am J Sports Med, 2012, 40(6):1259-1268.
|
[38] |
Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes[J]. Int J Nanomedicine, 2014, 9:2373-2385.
|
[39] |
Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months' follow-up[J]. J Shoulder Elbow Surg, 2011, 20(5):788-7894.
|
[40] |
Kanbe K, Chiba J, Nakamura A. Histological evaluation after arthroscopic reconstruction of the shoulder using a polytetrafluoroethylene patch for massive rotator cuff tears[J]. Eur J Orthop Surg Traumatol, 2013, 23 (2):S183-187.
|
[41] |
Tien YC, Chih TT, Lin JH, et al. Augmentation of tendon-bone healing by the use of calcium-phosphate cement[J]. J Bone Joint Surg Br, 2004, 86(7):1072-1076.
|
[42] |
Mutsuzaki H, Sakane M, Ito A, et al. The interaction between osteoclast-like cells and osteoblasts mediated by nanophase calcium phosphate-hybridized tendons[J]. Biomaterials, 2005, 26(9):1027-1034.
|
[43] |
Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair[J]. Am J Sports Med, 2011, 39(4):811-819.
|
[44] |
Huangfu X, Zhao J. Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model[J]. Arthroscopy, 2007, 23(5):455-462.
|
[45] |
Wang IE, Shan J, Choi R, et al. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface[J]. J Orthop Res, 2007, 25(12):1609-1620.
|
[46] |
Ciampi P, Scotti C, Nonis A, et al. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: a 3-year follow-up study[J]. Am J Sports Med, 2014, 42(5):1169-1675.
|
[47] |
Lenart BA, Martens KA, Kearns KA, et al. Treatment of massive and recurrent rotator cuff tears augmented with a poly-l-lactide graft, a preliminary study[J]. J Shoulder Elbow Surg, 2015, 24(6):915-921.
|