切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 30 -34. doi: 10.3877/cma.j.issn.2095-5790.2023.01.006

论著

低强度脉冲超声波治疗冻结肩模型兔的实验研究
蒋梦洁1, 钱治军2, 徐思3, 梁伟4,()   
  1. 1. 200043 上海,海军军医大学长海医院检验科
    2. 200043 上海,海军军医大学长海医院医务处
    3. 200043 上海,海军军医大学长海医院病理科
    4. 200043 上海,海军军医大学长海医院创伤骨科
  • 收稿日期:2022-09-15 出版日期:2023-02-05
  • 通信作者: 梁伟
  • 基金资助:
    虹口区卫健委重点科研基金(虹卫1702-10)

Experimental study on the treatment of frozen shoulder model Rabbit with low-intensity pulsed ultrasound

Mengjie Jiang1, Zhijun Qian2, Si Xu3, Wei Liang4,()   

  1. 1. Department of Clinical Laboratory, Changhai Hospital, Naval Medical University, Shanghai 200043, China
    2. Department of Medical Affarir, Changhai Hospital, Naval Medical University, Shanghai 200043, China
    3. Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai 200043, China
    4. Department of Orthopaedic Trauma, Changhai Hospital, Naval Medical University, Shanghai 200043, China
  • Received:2022-09-15 Published:2023-02-05
  • Corresponding author: Wei Liang
引用本文:

蒋梦洁, 钱治军, 徐思, 梁伟. 低强度脉冲超声波治疗冻结肩模型兔的实验研究[J]. 中华肩肘外科电子杂志, 2023, 11(01): 30-34.

Mengjie Jiang, Zhijun Qian, Si Xu, Wei Liang. Experimental study on the treatment of frozen shoulder model Rabbit with low-intensity pulsed ultrasound[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2023, 11(01): 30-34.

目的

探讨低强度脉冲超声波(low-intensity pulsed ultrasound, LIPUS)对冻结肩模型兔的疗效和机制。

方法

将60只雌性新西兰兔随机分为空白对照组、模型组和LIPUS治疗组。采用持续劳损并且冰敷的方法制作冻结肩模型后,观察患肩周围组织的病理变化,并检测血清中的转化生长因子-β1(transforming growth factor-β, TGF-β1)、前列腺素-E2(prostaglandin E2, PGE-2)及羟脯氨酸(hydroxyproline,HYP)的含量。

结果

采用多组资料的单项方差分析方法进行统计分析,发现LIPUS治疗组中TGF-β1、PGE-2、HYP含量较模型组明显降低,而模型组中含量较空白对照组明显增高,差异均有统计学意义(P<0.05)。病理切片结果显示治疗组患肩滑膜增生和肌腱纤维增生程度改善,组织修复加速。

结论

LIPUS通过降低新西兰兔冻结肩周围组织中TGF-β1、PGE-2、HYP含量,达到抗炎镇痛效果,值得在临床中推广使用。

Background

Diffuse shoulder pain and shoulder joint mobility disorder are the main clinical manifestations of a frozen shoulder. It often occurs on the shoulder of middle-aged and older adults. The lesion involves the shoulder, joint bursae, and other soft tissues. The incidence of frozen shoulder is 2%-5%, but its pathogenesis is unknown, and there are many limitations and poor curative effects in current treatment methods. Therefore, further understanding its pathogenesis and exploring new therapies to improve the quality of life of patients with frozen shoulders is of great significance. Animal and clinical trials have demonstrated that low-intensity pulsed ultrasound (LIPUS) can accelerate fracture healing and promote the repair of other connective tissue injuries, such as muscles, tendons, cartilage, ligaments, etc. So far, no reports have been found about the effect of LIPUS on frozen shoulder animal models. Objective To investigate the effect and mechanism of LIPUS on frozen shoulder model rabbits.

Methods

Sixty female New Zealand rabbits were randomly divided into a control group, a model group, and a LIPUS treatment group. After the frozen shoulder model was made by the method of continuous strain and ice compress, the pathological changes of the tissues around the affected shoulder were observed, and the contents of transforming growth factor-β1 (TGF-β1), prostaglandin-E2 (PGE-2) and hydroxyproline (HYP) in serum were detected.

Results

With a single variance analysis of multiple data groups, it was found that the contents of TGF-β1, PGE-2, and HYP in the LIPUS treatment group were significantly decreased compared with the model group. In contrast, the contents in the model group were significantly increased compared with the blank control group, with statistically significant differences (P < 0.05). The results of the pathological section showed that the degree of synovial hyperplasia and tendon fiber hyperplasia were improved in the treatment group, and the tissue repair was accelerated.

Conclusion

LIPUS can achieve anti-inflammatory and analgesic effects by reducing the contents of TGF-β1, PGE-2, and HYP in the frozen shoulder tissues of New Zealand rabbits, which is worth promoting in clinical use.

表1 三组新西兰兔血清中TGF-β1、PGE-2、HYP的变化(±s
图1 对照组低倍镜(×40)
图2 对照组高倍镜(×400)
图3 模型组低倍镜(×40)
图4 模型组高倍镜(×400)
图5 治疗组低倍镜(×40)
图6 治疗组高倍镜(×400)
[1]
Hsu JE, Anakwenze OA, Warrender WJ, et al. Current review of adhesive capsulitis[J]. J Shoulder Elbow Surg, 2011, 20(3):502-514.
[2]
Duarte LR.The stimulation of bone growth by ultrasound [J]. Z Exp Chir Transplant Kunstiche Organe (Geman),1986,19:185-195.
[3]
Jia XLChen WZZhou K,et al.Effects of low-intensitypulsed ultrasound in repairing injured articular cartilage [J].Chin J Traumatol20058(3):175-178.
[4]
Takakura YMatsui NYoshiya S,et a1.Low intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats [J].J Ultrasound Med200221(3):283-288.
[5]
Kaltles JLBurton HW.Continuous therapeutic ultrasound ac.eelerates repair of contraction——induced skeletal muscle damage in rats [J].Arch Phys Med Rehabil200283(1):1-4.
[6]
Enwemeka CSRodriguez OMendosa S.The biomechanic MM effects of low--intensity ultrasound on healing tendons [J].Ultrasound Med Biol199016(8):801-807.
[7]
Yeung CKGuo XNg YF.Pulsed ultrasound treatment aecelerates the repair of Achilles tendon rupture in rats [J].J Orthop Res200624(2):193-201.
[8]
王晨瑶,方剑乔,邵晓梅,等. 肩髃穴电针对肩关节周围炎家兔模型的干预作用[J].浙江中医药大学学报200731(4):478-480,482.
[9]
韩森宁.针刀对肩周炎模型家兔不同期炎性因子影响的实验研究[D].北京:北京中医药大学,2011.
[10]
Rodeo SA, Hannafin JA, Tom J, et al. Immunolocalization of cytokines and their receptors in adhesive capsulitis of the shoulder[J]. J Orthop Res, 1997,15(3): 427-436.
[11]
Bunker TD, Reilly J, Baird KS, et al. Expression of growth factors, cytokines and matrix metalloproteinases in frozen shoulder[J]. J Bone Joint Surg Br,2000,82(5):768-773.
[12]
刘纯杰,张兆山.转化生长因子β的生物学特性、功能及其临床应用前景[J].生物技术通讯200112(4):42-44.
[13]
王春阳.细胞因子在软组织损伤修复中的作用[J].广州体育学院200525(3):81-83.
[14]
熊昌源,毕学薇,沈林,等.兔肩周炎的模型复制及相关生化指标测定[J].中国骨伤19959(4):11-14.
[15]
熊昌源,毕学薇,刘松林,等.持续机械劳损加冰敷复制实验性兔肩关节周围炎的病理学观察[J].中医药研究1995,(5):52-54.
[1] 陈祥慧, 杨静, 朱亚琼, 陈思明, 王月香, 唐杰. 超声引导经肩袖间隙注射治疗冻结肩的临床研究[J]. 中华医学超声杂志(电子版), 2022, 19(04): 311-316.
[2] 尹莉, 梁晓宁, 马秀清, 宓士军, 韩梅, 郭瑞君. 可视化诊疗技术(超声)在冻结肩诊疗及疗效评估中的应用[J]. 中华医学超声杂志(电子版), 2019, 16(11): 810-814.
[3] 胡雯辉, 于力, 温跃强, 张瑶, 郝志宏, 陈蓉燕. 转化生长因子-β1诱导下肾小球系膜细胞Smad2的表达与Ⅳ型胶原分泌的相关性研究及来氟米特的干预作用[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(04): 438-445.
[4] 邝世航, 黄双艺, 乐有为, 冯建华. 慢性前列腺炎TGF-β1、CTGF的表达水平及其与症状指数的关系[J]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(02): 125-128.
[5] 胡新春, 李昌波, 孙杰, 邓超英, 肖华毅, 刘翱. N-乙酰半胱氨酸与IL-27对博莱霉素诱导的小鼠肺纤维化的影响[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 691-696.
[6] 薛庆云, 赵立连, 徐旭阳, 郑其开, 傅志俭, 张元民, 王延秀, 熊晓扬, 许亚男, 石磊, 王飞. 奇正消痛贴膏治疗渐冻期冻结肩的多中心随机对照临床试验[J]. 中华肩肘外科电子杂志, 2021, 09(04): 352-359.
[7] 刘全辉, 戴祝, 吴彪, 黄文, 李健. 关节镜松解序贯关节灌注治疗疼痛期冻结肩[J]. 中华肩肘外科电子杂志, 2021, 09(02): 131-135.
[8] 束昊, 袁滨, 黄瑶, 何兵, 王磊, 王芳, 孙鲁宁. 关节镜下双后入路结合前方入路盂肱关节囊松解治疗重度原发性冻结肩[J]. 中华肩肘外科电子杂志, 2020, 08(01): 21-25.
[9] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[10] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[11] 冯晓剑, 杨莹, 王利华, 袁瑞霞. Wnt信号调控骨髓源巨噬细胞参与肾脏纤维化的作用及机制[J]. 中华肾病研究电子杂志, 2018, 07(03): 126-130.
[12] 乔晞, 赵宁, 王利华, 张瑞婧, 韩伟霞. 上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J]. 中华肾病研究电子杂志, 2015, 04(01): 29-36.
[13] 余丽娟, 梁英, 刘文杰, 杜一婷, 李迎春. 肌骨超声影像技术在冻结肩诊断及介入治疗中的应用进展[J]. 中华老年骨科与康复电子杂志, 2021, 07(04): 252-256.
[14] 张涛, 梁英, 高敏, 杜一婷, 刘强. 盂肱关节腔容量的测量对冻结肩临床分期及治疗影响的研究[J]. 中华老年骨科与康复电子杂志, 2020, 06(06): 346-350.
[15] 李建忠, 岳茂兴, 冯凯, 司少艳, 徐冰心, 陈阿鑫, 刘志国. 氮氧化物吸入致小鼠肺损伤后血清MMP-2、MMP-9和HYP的变化[J]. 中华卫生应急电子杂志, 2016, 02(04): 248-250.
阅读次数
全文


摘要