切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2025, Vol. 13 ›› Issue (04) : 218 -225. doi: 10.3877/cma.j.issn.2095-5790.2025.04.005

论著

BMI与肩关节撞击综合征的因果关系:来自孟德尔随机化的证据
肖伟, 尹金焱, 殷剑, 孙俊刚()   
  1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院骨科中心
  • 收稿日期:2025-04-04 出版日期:2025-11-05
  • 通信作者: 孙俊刚

Causal relationship between BMI and impingement syndrome of shoulder: evidence from Mendelian randomization

Wei Xiao, Jinyan Yin, Jian Yin, Jungang Sun()   

  1. Orthopaedic Centre of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi 830001, China
  • Received:2025-04-04 Published:2025-11-05
  • Corresponding author: Jungang Sun
引用本文:

肖伟, 尹金焱, 殷剑, 孙俊刚. BMI与肩关节撞击综合征的因果关系:来自孟德尔随机化的证据[J/OL]. 中华肩肘外科电子杂志, 2025, 13(04): 218-225.

Wei Xiao, Jinyan Yin, Jian Yin, Jungang Sun. Causal relationship between BMI and impingement syndrome of shoulder: evidence from Mendelian randomization[J/OL]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2025, 13(04): 218-225.

目的

应用孟德尔随机化(Mendelian randomization, MR)研究方法联合生物信息分析及全球疾病负担(global burden of disease, GBD)数据库分析,探究体重指数(body mass index, BMI)与肩关节撞击综合征之间的因果关系。

方法

基于欧洲人群全基因组关联研究(genome-wide association studies, GWAS)数据筛选BMI相关单核苷酸多态性(single nucleotide polymorphisms, SNP)作为工具变量,通过逆方差加权法(inverse-variance weighted, IVW)等五种方法结合基因富集分析及GBD数据库验证人群负担并构建回归模型。

结果

共纳入390例SNP患者,IVW等五种方法分析显示:BMI每增加1个单位,肩关节撞击综合征风险提升0.2%(OR=1.002,95% CI: 1.001~1.003),基因富集分析提示BMI可能通过离子通道调控、突触信号传导及Rap1信号通路影响肩关节撞击综合征。药物预测发现劳拉西泮及匹立尼酸等潜在治疗药物。GBD数据分析显示高BMI可增加肌肉骨骼疾病伤残调整寿命年。

结论

研究从遗传因果和人群负担双重角度证实高BMI是肩关节撞击综合征的重要危险因素,为靶向干预提供理论依据,但需进一步验证种族普适性及分子机制。

Background

Shoulder impingement syndrome is a common shoulder disorder characterized by a structural narrowing of the subacromial space, which causes pain when patients raise their arms or lie on the affected side. Current research suggests that preventing obesity can reduce the incidence of shoulder joint-related diseases, and obesity is positively correlated with rotator cuff ligament injury. Moreover, body mass index (BMI) can serve as a simple method to measure the degree of obesity, as it is easy to obtain and has clear categories. However, some studies suggest that a high BMI can have a specific protective effect on the shoulder joint. Therefore, the causal relationship between BMI and shoulder impingement syndrome awaits further study.

Objective

To explore the causal relationship between BMI and shoulder impingement syndrome by combining Mendelian randomization (MR) research method with bioinformatics analysis and analysis of the global burden of disease (GBD) database.

Methods

Based on the data of genome-wide association studies (GWAS) in European populations, BMI-related single-nucleotide polymorphisms (SNP) were screened as instrumental variables. The population burden was verified, and a regression model was constructed by combining five methods, including inverse variance weighted (IVW) with gene enrichment analysis and the GBD database.

Results

A total of 390 cases of SNP were included. The analysis by five methods, including the inverse variance weighting method, showed that: For every 1-unit increase in BMI, the risk of shoulder impingement syndrome increases by 0.2% (OR=1.002, 95% CI: 1.001-1.003). Gene enrichment analysis suggests that BMI may influence shoulder impingement syndrome through the regulation of ion channels, synaptic signal transduction, and the Rap1 signaling pathway. Drug prediction has identified potential therapeutic drugs such as lorazepam and pilocarpine acid. GBD data analysis shows that a high BMI can increase the disability-adjusted life years for musculoskeletal diseases.

Conclusion

The research, from both genetic causality and population burden perspectives, confirmed that high BMI is an important risk factor for shoulder impaction syndrome, providing a theoretical basis for targeted intervention. However, further verification of racial universality and molecular mechanisms is needed.

图1 两样本MR设计思路注:MR为孟德尔随机化;BMI为体重指数
表1 BMI与肩关节撞击综合征GWAS数据来源特征
图2 MR分析的散点图注:MR为孟德尔随机化;SNP为单核苷酸多态性;BMI为体重指数;IVW为逆方差加权法
图3 MR分析结果的漏斗图注:MR为孟德尔随机化;IVW为逆方差加权法
表2 BMI与肩关节撞击综合征MR分析结果
图4 GO与KEGG富集分析结果(柱状图)注:GO为基因本体;KEGG为京都基因与基因组百科全书
图5 GO与KEGG富集分析结果(气泡图)注:GO为基因本体;KEGG为京都基因与基因组百科全书
图6 EBF1基因与劳拉西泮结合能-4.811 kcal/mol
图7 TENM2与匹立尼酸结合能-6.199 kcal/mol
图8 EBF1基因与匹立尼酸结合能-5.322 kcal/mol
图9 全球高BMI归因负担(X)与肌肉骨骼肉骨疾病DALYs率(Y)关联散点图注:DALYs为伤残调整生命年
图10 1990~2021年全球BMI均值与肌疾病DALYs率变化趋势图注:BMI为体重指数;DALYs为伤残调整生命年
图11 肌肉骨骼疾病DALYs率实际观测值与理论预测值对比图注:DALYs为伤残调整寿命年;MR为孟德尔随机化
表3 肩关节撞击综合征在肌肉骨骼疾病的DALYs中占比的推算过程
[1]
Uysal Ö, Demirci S, Kara D,et al. Tender point examination with palpation in different shoulder pathologies: A retrospective study[J]. J Orthop Sci, 2022, 27(2): 366-371.
[2]
陈润芝, 体质指数与肩袖损伤相关性及预测价值分析[D]. 上海:同济大学,2020.
[3]
Singh JA, Sperling JW, Cofield RH. Ninety day mortality and its predictors after primary shoulder arthroplasty: an analysis of 4,019 patients from 1976-2008[J]. BMC Musculoskelet Disord, 2011, 12: 231.
[4]
Bowden J, Del Greco MF, Minelli C,et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11): 1783-1802.
[5]
Kuleshov MV, Jones MR, Rouillard AD,et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1): W90-97.
[6]
Griffin MJ, Zhou Y, Kang S, et al. Early B-cell factor-1 (EBF1) is a key regulator of metabolic and inflammatory signaling pathways in mature adipocytes[J]. J Biol Chem, 2013, 288(50): 35925-35939.
[7]
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
[8]
Shim GY, Choi J, Kim HJ, et al. Global, Regional, and National Burden of Spine Pain, 1990-2019: A Systematic Analysis of the Global Burden of Disease Study 2019[J]. Arch Phys Med Rehabil, 2024, 105(3): 461-469.
[9]
Luime JJ, Koes BW, Hendriksen IJ, et al. Prevalence and incidence of shoulder pain in the general population; a systematic review[J]. Scand J Rheumatol, 2004, 33(2): 73-81.
[10]
Davis KG, Kotowski SE. Prevalence of Musculoskeletal Disorders for Nurses in Hospitals, Long-Term Care Facilities, and Home Health Care: A Comprehensive Review[J]. Hum Factors, 2015, 57(5): 754-792.
[11]
Prakash R, Pathak R, Chen Z, et al. Risk factors associated with degenerative glenohumeral osteoarthritis[J]. BMJ Open Sport Exerc Med, 2025, 11(1): e002247.
[12]
Wang L, Lyu F, Rong J, et al. Factors influencing shoulder stiffness after open reduction and internal fixation of proximal humeral fractures[J]. Jt Dis Relat Surg, 2024, 35(2): 285-292.
[13]
Sterner JA, Reaves SK, Aguinaldo AL, et al. Inverse dynamics analysis of youth pitching arm kinetics using body composition imaging[J]. Sports Biomech, 2022, 21(9): 993-1007.
[14]
Bi W, Yang M, Jiang C. Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population[J]. J Orthop Surg Res, 2023, 18(1): 676.
[15]
Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system[J]. Neuropeptides, 2016, 58:41-51.
[16]
Marek-Jozefowicz L, Nedoszytko B, Grochocka M,et al. Molecular Mechanisms of Neurogenic Inflammation of the Skin[J]. Int J Mol Sci, 2023, 24(5): 5001.
[17]
Blaine TA, Cote MA, Proto A, et al. Interleukin-1β stimulates stromal-derived factor-1α expression in human subacromial bursa[J]. J Orthop Res, 2011, 29(11): 1695-1699.
[18]
Eliasberg CD, Wada S, Carballo CB, et al. Identification of Inflammatory Mediators in Tendinopathy Using a Murine Subacromial Impingement Model[J]. J Orthop Res, 2019, 37(12): 2575-2582.
[19]
Gong N, Hagopian G, Holmes TC, et al. Functional Reorganization of Local Circuit Connectivity in Superficial Spinal Dorsal Horn with Neuropathic Pain States[J]. eNeuro, 2019, 6(5): ENEURO. 0272-19. 2019.
[20]
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain[J]. J Neural Transm (Vienna), 2020, 127(4): 481-503.
[21]
Sunilkumar S, Kimball SR, Dennis MD. Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis[J]. Cell Signal, 2021, 84: 110010.
[22]
Kosuru R, Chrzanowska M. Integration of Rap1 and Calcium Signaling[J]. Int J Mol Sci, 2020, 21(5): 1616.
[23]
Chen X, Zhang R, Zhang Q,et al. Microtia patients: Auricular chondrocyte ECM is promoted by CGF through IGF-1 activation of the IGF-1R/PI3K/AKT pathway[J]. J Cell Physiol, 2019, 234(12): 21817-21824.
[24]
Leahy TP, Chenna SS, Soslowsky LJ, et al. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development[J]. Faseb J, 2024, 38(17): e70050.
[25]
Ma ZA. The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β -cell failure[J]. Curr Diabetes Rev, 2012, 8(1): 69-75.
[26]
Yalcin S, Marinkovic D, Mungamuri SK,et al. ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(-/-) mice[J]. Embo J, 2010, 29(24): 4118-4131.
[27]
Kusminski CM, Holland WL, Sun K, et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity[J]. Nat Med, 2012, 18(10): 1539-1549.
[28]
Zorzano A, Liesa M, Palacín M. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes[J]. Int J Biochem Cell Biol, 2009, 41(10): 1846-1854.
[29]
Aguer C, Harper ME. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects[J]. Best Pract Res Clin Endocrinol Metab, 2012, 26(6): 805-819.
[30]
Tang C, Koulajian K, Schuiki I,et al. Glucose-induced beta cell dysfunction in vivo in rats: link between oxidative stress and endoplasmic reticulum stress[J]. Diabetologia, 2012, 55(5): 1366-1379.
[31]
Rautureau Y, Berlatie M, Rivas D,et al. Adenylate cyclase type 9 antagonizes cAMP accumulation and regulates endothelial signalling involved in atheroprotection[J]. Cardiovasc Res, 2023, 119(2): 450-464.
[32]
He T, Huang J, Chen L,et al. Cyclic AMP represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5[J]. J Mol Cell Cardiol, 2020, 145: 88-98.
[1] 刘新桃, 宋丽娟, 梁国骏, 杨逸禧, 陈柳. 脑沟形态特征与骨坏死风险的孟德尔随机化分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 580-585.
[2] 陈柳, 梁国骏, 陈玉书, 刘新桃. 孟德尔随机化研究职业性严寒暴露与冻结肩[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 521-527.
[3] 史彦纪, 张磊, 雷宁波, 常瑞龙, 左宁, 顾玉彪. 孟德尔随机化探讨免疫性疾病与人工关节再手术的关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 193-199.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 王思卓, 段晓鑫, 陈隆, 董胜利. 肠道微生物群、血液代谢物和胃癌的因果关系:东亚人群中介孟德尔随机化研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 163-168.
[6] 何永庆, 苍雪静, 姜亚志. 肠道微球菌科通过免疫介导与乳腺癌发生关联的孟德尔随机化研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 193-198.
[7] 孟泓宇, 戴锦辉, 胡嘉金, 李光辉. 炎性细胞因子与胰腺导管腺癌的因果关系:一项孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 948-955.
[8] 刘晓萍, 汪嵘嵘, 吴佳慧, 吴紫云, 周伯宣. 多组学分析HAPLN1与肝癌预后及免疫细胞浸润关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 609-618.
[9] 王继才, 张广权, 吴芬芳, 史宪杰. 孟德尔随机化分析克罗恩病与非酒精性脂肪性肝病之间因果关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 601-608.
[10] 牛斌, 佘林璐, 翁康强, 李沪, 吴翔, 戴英波. 辛伐他汀预防胆石症的孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 60-67.
[11] 王飞, 张凯, 姚占胜. 一种信号通路水平结直肠癌细胞系选择新视角探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 179-183.
[12] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[13] 李冠奇, 汤嘉俊, 刘杰灵, 王方敏, 丁质钰, 彭毅, 王卫国, 苗惊雷, 陈世杰, 李劲松. 通过蛋白质性状位点分析揭示弥漫性特发性骨肥厚的潜在治疗靶点[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 345-350.
[14] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[15] 顾家宁, 韩国达, 闫昊然, 李正旗, 王亮. 体质量指数、2 型糖尿病、生活方式因素与胃食管反流病的关系:一项双样本孟德尔随机化研究[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 53-61.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?