切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 330 -337. doi: 10.3877/cma.j.issn.2095-5790.2023.04.006

论著

肱骨远端关节软骨的三维分布及双侧配准研究
李尚哲, 杨珖, 陈仁杰, 张海龙, 鲁谊()   
  1. 100035 首都医科大学附属北京积水潭医院运动医学科
  • 收稿日期:2023-09-21 出版日期:2023-11-05
  • 通信作者: 鲁谊
  • 基金资助:
    北京市自然科学基金面上项目(7222085); 国家自然科学基金面上项目(82172512)

Three-dimensional distribution and bilateral registration of articular cartilage of distal humerus

Shangzhe Li, Guang Yang, Renjie Chen, Hailong Zhang, Yi Lu()   

  1. Department of Sports Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
  • Received:2023-09-21 Published:2023-11-05
  • Corresponding author: Yi Lu
引用本文:

李尚哲, 杨珖, 陈仁杰, 张海龙, 鲁谊. 肱骨远端关节软骨的三维分布及双侧配准研究[J]. 中华肩肘外科电子杂志, 2023, 11(04): 330-337.

Shangzhe Li, Guang Yang, Renjie Chen, Hailong Zhang, Yi Lu. Three-dimensional distribution and bilateral registration of articular cartilage of distal humerus[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2023, 11(04): 330-337.

目的

评估肱骨远端关节面软骨的三维分布情况并比较双侧肘关节软骨分布的差异性,同时对影响肘关节软骨个体差异的危险因素进行初步分析。

方法

收集2021年1月至2022年12月就诊本院行双侧肘关节3D-MRI、无骨性、软骨结构异常患者,36例受试者包括女17例、男19例;年龄23~45岁,平均34.8岁,右利手26例。没有骨关节炎受试者纳入。收集纳入受试者特征以及影像学数据,影像学数据以DICOM格式传输到MIMICS 21.0软件中,建立相应三维坐标系,以矢状面图像上垂直于软骨下骨方向为标准,在多个位置进行软骨厚度测量。评估正常中青年肱骨远端关节面软骨厚度分布情况、双侧关节软骨厚度一致性及应力关节面软骨厚度的影响因素分析。

结果

主力侧肱骨远端软骨位于肱骨滑车外侧缘7点钟位置最厚(1.54±0.39)mm,肱骨小头外侧缘2点钟位置最薄(0.09±0.31)mm;非主力侧软骨位于肱骨小头外侧缘6点钟位置最厚(1.49±0.29)mm,肱骨滑车内侧缘11点位置最薄(0.03±0.16)mm。关节软骨分布最厚较最薄点差异具有统计学意义(主力侧P<0.01,非主力侧P<0.01)。在双侧软骨分布的比较中,双侧关节面软骨厚度差异最大为(0.17±0.38)mm,差异无统计学意义。经过Wilks典型相关性分析关节面域软骨厚度与年龄、性别、主力侧和劳动类型均差异无统计学意义(P>0.05)。

结论

在正常中青年人群中,肱骨远端软骨厚度分布存在差异。双侧关节面软骨分布厚度无明显差异。关节面软骨厚度与年龄、性别、主力侧及工作类型无显著相关性。

Background

The articular cartilage plays an exceedingly significant role in various aspects of the elbow joint, including flexion, extension, rotation, load-bearing, and force transmission. Changes in the anatomical parameters of the cartilage not only alter its biomechanical structure, leading to discomfort but also have a profound impact on elbow joint surgeries and articular anatomical reconstructions. Previous research has primarily focused on the two-dimensional "planarization" assessment of cartilage, lacking spatial-specific studies of the articular cartilage. Additionally, there is a lack of research concerning the distribution of articular cartilage in the bilateral elbow joints of young to middle-aged individuals. Consequently, the absence of evidence in selecting appropriate control templates for articular cartilage in patients' elbow joints contributes to uncertainty in current clinical treatments.

Objective

To evaluate the three-dimensional distribution of articular surface cartilage of distal humerus, compare the difference of articular cartilage distribution of bilateral elbow, and preliminarily analyze the risk factors affecting individual differences of articular cartilage.

Methods

The 3D-MRI scans of bilateral elbow joints from patients who visited our hospital between January 2021 and December 2022 were collected in our study, excluding those with osseous or cartilaginous structural abnormalities. A total of 36 subjects, comprising 17 females and 19 males, with an average age of 34.8 years (ranging from 23 to 45 years), were included, with 26 right-hand dominants. Subjects with no evidence of osteoarthritis were enrolled. Demographic information and imaging data of the enrolled subjects were collected. In DICOM format, the imaging data were transferred to MIMICS 21.0 software to establish a corresponding three-dimensional coordinate system. With the sagittal plane images perpendicular to the subchondral bone, measurements of cartilage thickness were conducted at multiple locations. The study aims to evaluate the distribution of articular cartilage thickness on the normal distal humeral joint surfaces in young to middle-aged individuals, assess the consistency of bilateral articular cartilage thickness, and analyze the factors influencing stress articular cartilage thickness.

Results

On the dominant side, the distal humeral articular cartilage was thickest at the 7 o'clock position of the humeral trochlea, measuring (1.54±0.39) mm, and thinnest at the 2 o'clock position of the lateral aspect of the capitellum, measuring (0.09±0.31) mm. On the non-dominant side, the cartilage was thickest at the 6 o'clock position of the lateral aspect of the capitellum, measuring (1.49±0.29) mm, and thinnest at the 11 o'clock position of the medial aspect of the trochlea, measuring (0.03±0.16) mm. A statistically significant difference existed between the cartilage distribution's thickest and thinnest points (dominant side: P< 0.01, non-dominant side: P< 0.01). The most remarkable difference in thickness between bilateral articular cartilage was (0.17±0.38) mm, showing no clinically significant statistical difference. Wilks' canonical correlation analysis revealed no statistically significant correlation between articular cartilage thickness within the joint surface domain and age, gender, dominant side, or occupational type (P>0.05) .

Conclusion

In the normal young and middle-aged population, there are differences in distal humeral articular cartilage thickness distribution. No significant differences are observed in the thickness distribution of articular cartilage between both sides of the joint. Additionally, articular cartilage thickness does not correlate significantly with age, gender, dominant side, or occupational type.

图1 MRI中软骨测量位点 图A :冠状面中选择的8个位置的矢状面;图B:矢状面中确定软骨测量点
表1 人口学特征(n=36)
图2 单一个体关节面不同位置的软骨厚度三维分布 图A:主力侧;图B:非主力侧
图3 单一个体肱骨远端软骨提取
表2 不同位置软骨厚度的平均值对比(mm,±s
位置 侧别 肱骨小头外侧缘 肱骨小头中心点 肱骨小头内侧缘 肱骨滑车外侧缘 滑车外侧缘与滑车棘中点 滑车棘 滑车棘与滑车内侧缘中点 滑车内侧缘
2 非主力侧 0.28±0.55 0.66±0.56 1.03±0.66 1.13±0.35 0.91±0.26 0.90±0.38 1.00±0.40 0.51±0.50
  主力侧 0.09±0.31 0.33±0.46 1.09±0.50 0.96±0.44 1.00±0.25 0.93±0.29 0.90±0.42 0.66±0.48
3 非主力侧 0.61±0.66 1.02±0.38 1.17±0.57 1.31±0.44 1.17±0.35 1.05±0.28 1.12±0.34 0.85±0.37
  主力侧 0.42±0.58 0.84±0.52 1.22±0.41 1.28±0.29 1.22±0.26 1.08±0.21 1.20±0.24 0.89±0.45
4 非主力侧 0.81±0.60 1.07±0.29 1.30±0.40 1.34±0.33 1.25±0.49 1.10±0.27 1.13±0.24 0.96±0.21
  主力侧 0.87±0.59 1.10±0.26 1.14±0.25 1.28±0.38 1.31±0.34 1.10±0.28 1.15±0.22 1.06±0.29
5 非主力侧 1.13±0.41 1.07±0.23 1.29±0.33 1.33±0.40 1.20±0.42 1.15±0.36 1.14±0.19 1.05±0.25
  主力侧 1.16±0.39 1.16±0.26 1.20±0.25 1.32±0.42 1.35±0.33 1.15±0.29 1.20±0.24 1.14±0.22
6 非主力侧 1.49±0.30 1.26±0.42 1.36±0.34 1.44±0.39 1.35±0.38 1.20±0.35 1.20±0.22 1.12±0.29
  主力侧 1.41±0.29 1.25±0.34 1.30±0.33 1.43±0.36 1.44±0.36 1.27±0.28 1.33±0.34 1.24±0.33
7 非主力侧 1.39±0.40 1.29±0.35 1.48±0.48 1.38±0.35 1.36±0.41 1.17±0.41 1.27±0.16 1.08±0.29
  主力侧 1.35±0.31 1.35±0.34 1.39±0.35 1.54±0.39 1.40±0.36 1.34±0.35 1.29±0.23 1.13±0.33
8 非主力侧 1.32±0.31 1.25±0.32 1.34±0.34 1.35±0.35 1.17±0.28 1.13±0.28 1.20±0.24 0.87±0.48
  主力侧 1.30±0.31 1.32±0.38 1.29±0.32 1.45±0.39 1.30±0.27 1.23±0.41 1.20±0.44 1.03±0.50
9 非主力侧 1.33±0.37 1.21±0.29 1.23±0.31 1.21±0.47 1.13±0.33 1.08±0.33 1.13±0.41 0.84±0.58
  主力侧 1.24±0.25 1.15±0.40 1.30±0.27 1.39±0.33 1.24±0.41 1.15±0.34 1.07±0.52 0.72±0.55
10 非主力侧 0.79±0.49 0.92±0.41 1.02±0.45 0.96±0.45 0.86±0.35 0.71±0.39 0.79±0.46 0.37±0.47
  主力侧 0.89±0.45 0.90±0.44 0.94±0.46 1.00±0.57 1.03±0.40 0.96±0.37 0.90±0.48 0.30±0.47
11 非主力侧 0.29±0.49 0.50±0.46 0.17±0.42 0.42±0.54 0.57±0.45 0.50±0.62 0.35±0.49 0.03±0.16
  主力侧 0.16±0.35 0.30±0.41 0.16±0.40 0.26±0.44 0.62±0.44 0.54±0.51 0.48±0.63 0.13±0.37
图4 单一个体肱骨远端结果配准初步结果
表3 双侧软骨厚度分布差异的平均值(mm)
表4 肘关节软骨空间分布的影响因素
[1]
Giannicola G, Spinello P, Scacchi M, et al. Cartilage thickness of distal humerus and its relationships with bone dimensions: magnetic resonance imaging bilateral study in healthy elbows [J]. J Shoulder Elbow Surg, 2017, 26(5): e128-e136.
[2]
Grodzinsky AJ, Levenston ME, Jin M, et al. Cartilage tissue remodeling in response to mechanical forces [J]. Annu Rev Biomed Eng2000,2: 691-713.
[3]
Rettig LA, Hastings H 2nd, Feinberg JR. Primary osteoarthritis of the elbow: lack of radiographic evidence for morphologic predisposition, results of operative debridement at intermediate follow-up, and basis for a new radiographic classification system [J]. J Shoulder Elbow Surg, 2008, 17(1):97-105.
[4]
Adam C, Eckstein F, Milz S, et al. The distribution of cartilage thickness within the joints of the lower limb of elderly individuals [J]. J Anat, 1998 (Pt 2):203-214.
[5]
Eckstein F, Reiser M, Englmeier KH, et al. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging--from image to data, from data to theory [J]. Anat Embryol (Berl), 2001, 203(3):147-173.
[6]
Miyamura S, Sakai T, Oka K, et al. Regional Distribution of Articular Cartilage Thickness in the Elbow Joint: A 3-Dimensional Study in Elderly Humans [J]. JBJS Open Access, 2019, 4(3):e0011.1-11.
[7]
Graichen H, Springer V, Flaman T, et al. Validation of high-resolution water-excitation magnetic resonance imaging for quantitative assessment of thin cartilage layers. Osteoarthritis Cartilage [J]. Osteoarthritis Cartilage,2000,8(2):106-114.
[8]
Schub DL, Frisch NC, Bachmann KR, et al. Mapping of cartilage depth in the knee and elbow for use in osteochondral autograft procedures [J]. Am J Sports Med, 2013 ,41(4):903-907.
[9]
Giannicola G, Scacchi M, Sedati P, et al. Anatomical variations of the trochlear notch angle: MRI analysis of 78 elbows [J]. Musculoskelet Surg, 2016,100(Suppl 1):89-95.
[10]
Willing R, Lapner M, King GJ, et al. In vitro assessment of the contact mechanics of reverse-engineered distal humeral hemiarthroplasty prostheses [J]. Clin Biomech (Bristol, Avon), 2014,29(9):990-996.
[11]
Willing R, King GJW, Johnson JA. Contact mechanics of reverse engineered distal humeral hemiarthroplasty implants [J]. J Biomech, 2015,48(15):4037-4042.
[12]
Hohman DW, Nodzo SR, Qvick LM, et al. Hemiarthroplasty of the distal humerus for acute and chronic complex intra-articular injuries [J]. J Shoulder Elbow Surg, 2014 ,23(2):265-272.
[13]
Adolfsson L, Nestorson J. The Kudo humeral component as primary hemiarthroplasty in distal humeral fractures [J]. J Shoulder Elbow Surg, 2012,21(4):451-455.
[14]
Yeung C, Deluce S, Willing R, et al. Regional Variations in Cartilage Thickness of the Radial Head: Implications for Prosthesis Design [J]. J Hand Surg Am, 2015 ,40(12):2364-71,e1.
[15]
Zhang Q, Shi LL, Ravella KC, et al. Distinct Proximal Humeral Geometry in Chinese Population and Clinical Relevance [J]. J Bone Joint Surg Am, 2016 ,98(24):2071-2081.
[16]
Vezeridis AM, Bae DS. Evaluation of Knee Donor and Elbow Recipient Sites for Osteochondral Autologous Transplantation Surgery in Capitellar Osteochondritis Dissecans [J]. Am J Sports Med,2016 ,44(2):511-520.
[17]
Adam C, Eckstein F, Milz S, et al. The distribution of cartilage thickness in the knee-joints of old-aged individuals -- measurement by A-mode ultrasound [J]. Clin Biomech (Bristol, Avon), 1998, 13(1):1-10.
[18]
Zhang HL, Lin KJ, Lu Y. Prediction of the Size of the Fragment in Comminuted Coronoid Fracture Using the Contralateral Side: An Analysis of Similarity of Bilateral Ulnar Coronoid Morphology [J]. Orthop Surg,2020 ,12(5):1495-1502.
[19]
Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research [J]. J Chiropr Med, 2016 ,15(2):155-163.
[20]
Renani MS, Rahman M, Cil A, et al. Ulna-humerus contact mechanics: Finite element analysis and experimental measurements using a tactile pressure sensor [J]. Med Eng Phys, 2017 ,50:22-28.
[21]
Willing RT, Lalone EA, Shannon H, et al. Validation of a finite element model of the human elbow for determining cartilage contact mechanics [J]. J Biomech,2013 ,46(10):1767-1771.
[22]
Kim S, Carl Miller M. Validation of a Finite Element Humeroradial Joint Model of Contact Pressure Using Fuji Pressure Sensitive Film [J]. J Biomech Eng, 2016 ,138(1).
[23]
Spahn G, Lipfert JU, Maurer C, et al. Risk factors for cartilage damage and osteoarthritis of the elbow joint: case-control study and systematic literature review [J]. Arch Orthop Trauma Surg, 2017, 137(4):557-566.
[24]
Heijink A, Vanhees M, van den Ende K, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the elbow [J]. Knee Surg Sports Traumatol Arthrosc, 2016,24(7):2313-2318.
[25]
Carlier Y, Lenoir H, Rouleau DM, et al. rthroscopic debridement for osteoarthritis of the elbow: Results and analysis of predictive factors [J]. Orthop Traumatol Surg Res,2019 ,105(8S):S221-S227.
[1] 李鸿昌, 孙艳宏, 高旺, 张金才, 牛亚清, 张国梁. 滑膜软骨瘤病的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 679-683.
[2] 余泽俊, 苏松川, 付燕, 黄文凭. 自体膝关节骨软骨移植治疗距骨骨软骨损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 592-596.
[3] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[4] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[5] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[6] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[7] 朱意然, 覃健. 拉曼光谱技术用于监测膝关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(02): 276-282.
[8] 罗佳, 赵晶晶, 曹小珍, 钟玲, 范林军, 曾令娟. 单侧腋窝双侧乳晕入路机器人甲状腺术后局部加压预防皮下隧道出血的对照研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 603-606.
[9] 阳敏, 张婷, 钟玲, 刘军兰, 杜俊泽, 崔翔, 张晔, 范林军. 传统腔镜与达芬奇机器人手术治疗低危甲状腺癌的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 176-179.
[10] 蒋鹏飞, 程尼涛. 侵犯左肺及心包的巨大胸壁软骨肉瘤一例[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 296-298.
[11] 谭海宁, 于凌佳, 谢学虎, 刘宁, 张国强, 李想, 杨雍, 祝斌. 单通道全脊柱内镜治疗腰椎管狭窄症的隐性失血及危险因素分析[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 233-238.
[12] 龙珂, 戴祝, 刘全辉. 关节镜下肩袖修补联合喙突成形治疗肩袖撕裂合并喙突下囊肿[J]. 中华肩肘外科电子杂志, 2023, 11(03): 198-203.
[13] 王志文, 郑雪梅, 张庆坤, 王海江. 自发性低颅压综合征75例临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 398-401.
[14] 易和强, 邓志刚. 13例化脓性肋软骨炎的诊治体会[J]. 中华胸部外科电子杂志, 2023, 10(03): 176-179.
[15] 白晓辉, 张龙, 王永峰, 冯毅, 赵斌, 吕智, 徐朝健. 单侧与双侧经皮椎体成形术治疗Kummell病的疗效比较[J]. 中华老年病研究电子杂志, 2023, 10(02): 14-18.
阅读次数
全文


摘要