切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2021, Vol. 09 ›› Issue (03) : 263 -267. doi: 10.3877/cma.j.issn.2095-5790.2021.03.012

论著

骨科Ⅰ类切口手术部位感染病原菌分析
张宏侠1, 葛冰磊1, 左才红2, 李军2, 张庆2, 张财义2, 黄照国2, 陈健2,()   
  1. 1. 242000 宣城市人民医院检验科
    2. 242000 宣城市人民医院骨科
  • 收稿日期:2021-03-31 出版日期:2021-09-13
  • 通信作者: 陈健
  • 基金资助:
    安徽省卫生健康委员会科研项目(AHWJ2021b132)

Analysis of pathogenic bacteria in orthopedic surgical site infection of class I incision

Hongxia Zhang1, Binglei Ge1, Caihong Zuo2, Jun Li2, Qing Zhang2, Caiyi Zhang2, Zhaoguo Huang2, Jian Chen2,()   

  1. 1. Department of Clinical Laboratory, People's Hospital of Xuancheng City, Xuancheng 242000, China
    2. Department of Orthopaedics, People's Hospital of Xuancheng City, Xuancheng 242000, China
  • Received:2021-03-31 Published:2021-09-13
  • Corresponding author: Jian Chen
引用本文:

张宏侠, 葛冰磊, 左才红, 李军, 张庆, 张财义, 黄照国, 陈健. 骨科Ⅰ类切口手术部位感染病原菌分析[J]. 中华肩肘外科电子杂志, 2021, 09(03): 263-267.

Hongxia Zhang, Binglei Ge, Caihong Zuo, Jun Li, Qing Zhang, Caiyi Zhang, Zhaoguo Huang, Jian Chen. Analysis of pathogenic bacteria in orthopedic surgical site infection of class I incision[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2021, 09(03): 263-267.

目的

对骨科Ⅰ类切口手术部位感染的病原菌进行分析研究,为临床合理运用抗生素和控制手术部位感染提供参考。

方法

回顾性分析我院2010年1月至2020年12月骨科Ⅰ类切口手术部位感染送检的150份标本检测结果,对病原菌分布和耐药性进行统计学分析。

结果

150份切口分泌物标本中122份培养出细菌,细菌培养阳性率81.33%,其中革兰阳性菌占68.85%,革兰阴性菌占31.15%。检出率最高的革兰阳性菌为金黄色葡萄球菌(62株),其次为溶血性葡萄球菌(9株)。金黄色葡萄球菌对环丙氟哌酸(10.71%)、左氧氟沙星(7.14%)、利福平(7.14%)耐药率较低。检出率最高的革兰阴性菌为阴沟肠杆菌(17株),其次为大肠埃希菌(9株),阴沟肠杆菌对左氧氟沙星、头孢他啶、阿米卡星尚无耐药菌株。

结论

骨科Ⅰ类切口手术部位感染的主要病原菌为金黄色葡萄球菌,其次为阴沟肠杆菌,在药敏报告出来前,可以选用耐药率较低的抗生素如喹诺酮类联合利福平进行抗感染治疗,然后根据药敏结果及时调整。

Background

Surgical site infections (SSI) are infections that occur in incisions, deep organs, or cavities during the perioperative period of surgery and are among the most common nosocomial infections except for urinary tract infections, pneumonia infections, and blood infections. SSI will have a severe impact on the patient's health, and in extreme cases, it will even threaten the patient's life. In addition to the adverse effects on patients, SSI will also bring a substantial economic burden to the medical system. According to the statistical analysis of research data, superficial SSI treatment may be as high as 400 US dollars per case, while deep SSI treatment may be as high as 30 000 US dollars per case. SSI after orthopedic surgery is a severe complication with an increased incidence and a heavy economic burden. SSI affects patients after orthopedic surgery despite the use of prophylactic antibiotics and surgical techniques and postoperative care improvements. Since the surgical incisions of orthopedic hospitalized patients are mainly type I incisions (clean surgery) , statistical analysis of the pathogen distribution and drug resistance rate of the SSI specimens submitted by orthopedic hospitalized patients with type I incisions can provide a reference for clinical treatment and guide the rational use of antibacterial drugs.

Objective

To analyze the distribution characteristics of pathogens in orthopedic surgical site infection of class I incision in our hospital from 2012 to 2020 and provide a reference for the rational use of antibiotics in clinical practice.

Methods

From 2012 to 2020, 80 samples of SSI of class I incision in the orthopedic department were collected, and the distribution of pathogenic bacteria and drug resistance rate were analyzed.

Results

Bacteria were cultured in 65 of the 80 incision secretions, and the positive rate of bacterial culture was 81.25%, of which Gram-positive bacteria accounted for 69.23%, and Gram-negative bacteria accounted for 30.77%. The highest detection rate of Gram-positive bacteria was Staphylococcus aureus (33 strains) , followed by hemolytic Staphylococcus (5 strains) . Staphylococcus aureus for ciprofloxacin (10.71%) , levofloxacin (7.14%) , and rifampicin (7.14%) have low resistance rates. The highest gram-negative bacteria were Enterobacter cloacae (9 strains) , followed by Escherichia coli (5 strains) . There were no resistant strains of Enterobacter cloacae to levofloxacin, ceftazidime or amikacin.

Conclusions

The major pathogen of orthopedic SSI in class I incision is Gram-positive bacteria, mainly Staphylococcus aureus, which can be treated with antibiotics with low drug resistance before the results of bacterial culture and drug sensitivity are obtained to provide a reference for the rational use of antibiotics in clinical practice.

图1 细菌培养:球菌菌落
图2 革兰染色:革兰阳性菌(A),革兰阴性菌(B)
图3 显微镜镜检:革兰阳性球菌(A),革兰阴性杆菌(B)
表1 送检标本病原菌分布
表2 主要革兰阳性菌对常用抗菌药物的耐药率(%)
表3 主要革兰阴性菌对常用抗菌药物的耐药率(%)
[1]
Backes M, Dingemans SA, Dijkgraaf MGW, et al. Effect of antibiotic prophylaxis on surgical site infections following removal of 0rthopedic implants used for treatment of foot, ankle, and lower leg fractures: a randomized clinical trial[J].JAMA,2017,318(24):2438-2445.
[2]
Urban J A . Cost analysis of surgical site infections[J]. Surg Infect, 2006, 7 Suppl 1: S19-22.
[3]
Di Pilato V, Ceccherini F, Sennati S, et al. In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times[J]. Diagn Microbiol Infect Dis, 2019, 15:114901.
[4]
Wang TY, Back AG, Hompe E, et al. Impact of surgical site infection and surgical debridement on lumbar arthrodesis: a single-institution analysis of incidence and risk factors[J].J Clin Neurosci,2017,39:164-169.
[5]
中华人民共和国2018年国民经济和社会发展统计公报[J].中国统计,2019,(3):8-22.
[6]
中华医学会骨科学分会创伤骨科学组, 中华医学会骨科学分会外固定与肢体重建学组, 中国医师协会创伤外科医师分会创伤感染专家委员会,等. 中国骨折内固定术后感染诊断与治疗专家共识(2018版)[J].中华创伤骨科杂志,2018,20(11):929-936.
[7]
Boxma H, Broekhuizen T, Patka P, et al. Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: the dutch trauma trial[J]. Lancet,1996, 347(9009):1133-1137.
[8]
宋丽娜,令狐志宏,陈晓庆,等.骨科创口感染的病原菌分布及耐药性分析[J].中华实验外科杂志,2021,38(2):381.
[9]
Fernandes A, Dias M. The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms [J].J Clin Diagn Res,2013,7(2):219-223.
[10]
Boddapati V, Fu MC, Schairer WW, et al. Increased shoulder arthroscopy time is associated with overnight hospital stay and surgical site infection [J]. Arthroscopy,2018, 34(2): 363-368.
[11]
Shrestha S, Wenju P,Shrestha R, et al. Incidence and risk factors of surgical site infections in kathmandu university hospital, kavre, nepal [J]. Kathmandu Univ Med J, 2016,14(54):107-111.
[12]
Maradit Kremers H, Kremers WK, Berry DJ, et al. Social and behavioral factors in total knee and hip arthroplasty [J]. J Arthroplasty,2015,30(10):1852-1854.
[13]
Singh JA. Smoking and outcomes after knee and hip arthroplasty: a systematic review [J]. J Rheumatol,2011,38(9):1824-1834.
[14]
Reich MS, Fernandez I, Mishra A, et al. Diabetic control predicts surgical site infection risk in orthopaedic trauma patients [J].J Orthop Trauma,2019,33(10):514-517.
[15]
Sadoskas D, Suder NC, Wukich DK. Perioperative glycemic control and the effect on surgical site infections in diabetic patients undergoing foot and ankle s urgery [J].Foot Ankle Spec, 2016,9(1):24-30.
[16]
Richards JE, Hutchinson J, Mukherjee K, et al.Stress hyperglycemia and surgical site infection in stable nondiabetic adults with orthopedic injuries [J]. J Trauma Acute Care Surg, 2014,76(4):1070-1075.
[17]
Zhang X, Li T, Li Y, et al. Protective effect of intraoperative re-dose of prophylactic antibiotics on surgical site infection in diabetic patients: a retrospective cohort study [J]. Ann Translat Med,2019,7(5):96.
[18]
王艳华,张晓萌,薛峰,等.创伤骨科住院患者手术部位感染的流行病学特点及相关危险因素分析:单中心回顾性研究[J/CD].中华肩肘外科电子杂志,2020,8(1):62-67.
[19]
Gans I, Jain A, Sirisreetreerux N,et al. Current practice of antibiotic prophylaxis for surgical fixation of closed long bone fractures: a survey of 297 members of the Orthopaedic Trauma Association[J].Patient Saf Surg,2017,11(1):2.
[20]
Bryson DJ, Morris DLJ, Shivji FS, et al. Antibiotic prophylaxis in orthopaedic surgery: difficult decisions in an era of evolving antibiotic resistance[J].Bone Joint J,2016, 98-B(8):1014-1019.
[21]
Prokuski L. Prophylactic antibiotics in orthopaedic surgery[J]. J Am Acad Orthop Surg, 2008,16(5):283-293.
[22]
黄强,杨惠林,康鹏德,等.骨科择期手术加速康复预防手术部位感染指南[J].中华骨与关节外科杂志,2020,13(1):1-7.
[23]
Boxma H, Broekhuizen T, Patka P, et al. Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: the Dutch Trauma Trial [J].Lancet,1996,347(9009):1133-1137.
[24]
Bakhsheshian J, Dahdaleh NS, Lam SK, et al. The use of vancomycin powder in modern spine surgery: systematic review and meta-analysis of the clinical evidence [J]. World Neurosurg, 2015, 83(5):816-823.
[25]
任宝.骨科感染患者病原菌分布及耐药性分析[J].中国全科医学,2012,15(31):3674-3676.
[1] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[2] 李存权, 崔磊, 柳科军, 李政权, 刘俊豪, 卜阳. 胰十二指肠切除术后复杂腹腔感染的危险因素分析及病原菌构成[J]. 中华普通外科学文献(电子版), 2022, 16(06): 417-421.
[3] 中国医师协会器官移植医师分会, 中华医学会器官移植学分会. 中国实体器官移植手术部位感染管理专家共识(2022版)[J]. 中华移植杂志(电子版), 2022, 16(03): 129-139.
[4] 王晓丹, 王媛, 崔向宇, 任晓磊. 上尿路结石内镜手术后尿源性脓毒血症病原菌耐药及死亡高危因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 611-615.
[5] 王微, 杜相珠, 马悦, 祁晓芳. 改良留置导尿管相关尿路感染病原菌及感染危险因素研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 78-81.
[6] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[7] 刘法永, 胡萍, 戴丽. 获得性肺炎患者血流感染病原菌分布及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 666-669.
[8] 谭自明, 罗琼, 张美, 王君. 小儿病毒性脑炎并发肺部感染的病原菌及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 394-396.
[9] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[10] 刘准, 王枭杰, 孙艳武, 黄胜辉, 唐子涵, 陈锦华, 池畔, 黄颖. 厄他培南预防直肠癌高危手术部位感染的临床疗效分析[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 497-505.
[11] 黎金秋, 韦晓芳, 王成玉. 腹膜透析相关性腹膜炎细菌谱变迁及药敏分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 264-269.
[12] 王希岗, 张波, 李鸣, 高敏, 薛建新. 神经外科手术部位感染在HIV感染者与非HIV感染者中的临床差异[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 228-233.
[13] 宋涯含, 晁洪露, 田华, 窦豆, 赵旻暐. 机器人在骨科应用相关研究的国际现状与趋势分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 59-64.
[14] 李莉, 张丽天, 申雅文, 丁然, 程芳芳, 陈婷婷, 潘琳琳, 谢志伟, 杨艳, 臧苑彤. 复合护理干预预防骨科术后深静脉血栓的临床研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 177-181.
[15] 孙飞, 罗军, 向金波, 胡小燕. 川崎病病原菌感染及易感基因多态性的研究现状[J]. 中华临床医师杂志(电子版), 2023, 17(01): 89-92.
阅读次数
全文


摘要