切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2025, Vol. 13 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-5790.2025.01.001

述评

人工智能在肩肘外科中的应用与进展:现状与未来展望
祝杰生1, 樊沛1,()   
  1. 1. 325000 温州医科大学附属第二医院关节与骨肿瘤外科
  • 收稿日期:2025-01-01 出版日期:2025-02-05
  • 通信作者: 樊沛

Artificial intelligence in shoulder and elbow surgery:current applications and future prospects

Jiesheng Zhu, Pei Fan()   

  • Received:2025-01-01 Published:2025-02-05
  • Corresponding author: Pei Fan
引用本文:

祝杰生, 樊沛. 人工智能在肩肘外科中的应用与进展:现状与未来展望[J/OL]. 中华肩肘外科电子杂志, 2025, 13(01): 1-5.

Jiesheng Zhu, Pei Fan. Artificial intelligence in shoulder and elbow surgery:current applications and future prospects[J/OL]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2025, 13(01): 1-5.

随着人工智能(artificial intelligence,AI)技术的快速发展,其在医疗领域的应用逐渐增多,展现出良好的应用前景。近年来,肩肘外科作为骨科的一个重要分支, AI 在该领域的研究和临床实践中得到了广泛关注,尤其是在精准诊断、手术规划、机器人辅助手术、术后评估与康复、医患沟通和医生教育等方面的进展显著。当前的研究表明,AI 技术能够通过分析大量数据,提高疾病的早期诊断率,优化手术计划,并在术后评估中发挥重要作用,从而改善患者的治疗效果和满意度,并增强医患沟通。然而,尽管取得了一定的进展,仍面临数据隐私、算法透明性及临床应用适应性等挑战。本文旨在综述AI 在肩肘外科中的应用现状,分析当前研究成果,并展望未来的发展趋势,以期为相关领域的研究提供借鉴和思路。

[1]
Levin JM, Lorentz SG, Hurley ET,et al.Artificial intelligence in shoulder and elbow surgery: overview of current and future applications[J].J Shoulder Elbow Surg, 2024,33(7): 1633-1641.
[2]
Gupta P, Marigi EM, Sanchez-Sotelo J.Research on artificial intelligence in shoulder and elbow surgery is increasing[J].JSES Int, 2023,7(1):158-161.
[3]
Tharakan S, Klein B, Bartlett L,et al.Do ChatGPT and Google differ in answers to commonly asked patient questions regarding total shoulder and total elbow arthroplasty? [J].J Shoulder Elbow Surg, 2024,33(8): e429-e437.
[4]
Chung SW, Han SS, Lee JW, et al.Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J].Acta Orthop, 2018,89(4): 468-473.
[5]
Huhtanen JT, Nyman M, Doncenco D,et al.Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs[J].Sci Rep, 2022,12(1): 11803.
[6]
Guo D, Liu X, Wang D, et al.Development and clinical validation of deep learning for auto-diagnosis of supraspinatus tears[J].J Orthop Surg Res, 2023,18(1): 426.
[7]
Yao J, Chepelev L, Nisha Y, et al.Evaluation of a deep learning method for the automated detection of supraspinatus tears on MRI[J].Skeletal Radiol, 2022,51(9): 1765-1775.
[8]
Lin DJ, Schwier M, Geiger B, et al.Deep Learning Diagnosis and Classification of Rotator Cuff Tears on Shoulder MRI[J].Invest Radiol, 2023,58(6): 405-412.
[9]
Hahn S, Yi J, Lee HJ, et al.Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction[J].AJR Am J Roentgenol, 2022,218(3):506-516.
[10]
Yang L, Oeding JF, de Marinis R,et al.Deep learning to automatically classify very large sets of preoperative and postoperative shoulder arthroplasty radiographs[J].J Shoulder Elbow Surg, 2024,33(4): 773-780.
[11]
Sultan H, Owais M, Park C,et al.Artificial Intelligence-Based Recognition of Different Types of Shoulder Implants in X-ray Scans Based on Dense Residual Ensemble-Network for Personalized Medicine[J].J Pers Med, 2021, 11(6):482.
[12]
Tian R, Qin HZ, Zhong Q,et al.In-depth learning of automatic segmentation of shoulder joint magnetic resonance images based on convolutional neural networks[J].Comput Methods Programs Biomed, 2021,211: 106325.
[13]
Wang G, Han Y.Convolutional neural network for automatically segmenting magnetic resonance images of the shoulder joint[J].Comput Methods Programs Biomed, 2021,200:105862.
[14]
Batailler C, Fernandez A, Swan J, et al.MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review[J].Knee Surg Sports Traumatol Arthrosc, 2021,29(11): 3585-3598.
[15]
Wang Y.Artificial intelligence-powered robotic joint surgery:application,research progress,and prospects[J].Zhonghua Wai Ke Za Zhi, 2025,63(1): 32-38.
[16]
Colasanti GB, Moreschini F, Cataldi C, et al.GPS guided reverse shoulder arthroplasty[J].Acta Biomed, 2020,91(4s): 204-208.
[17]
Hones KM, King JJ, Schoch BS, et al.The in vivo impact of computer navigation on screw number and length in reverse total shoulder arthroplasty[J].J Shoulder Elbow Surg, 2021,30(10):e629-e635.
[18]
Wang AW, Hayes A, Gibbons R, et al.Computer navigation of the glenoid component in reverse total shoulder arthroplasty: a clinical trial to evaluate the learning curve[J].J Shoulder Elbow Surg,2020,29(3):617-623.
[19]
Jennewine BR, Brolin TJ.Emerging Technologies in Shoulder Arthroplasty: Navigation, Mixed Reality, and Preoperative Planning[J].Orthop Clin North Am, 2023,54(2):209-225.
[20]
Can Kolac U, Paksoy A, Akgün D,et al.Three-dimensional planning, navigation, patient-specific instrumentation and mixed reality in shoulder arthroplasty: a digital orthopedic renaissance[J].EFORT Open Rev, 2024,9(6): 517-527.
[21]
Ghomrawi HMK, O'Brien MK, Carter M, et al.Applying machine learning to consumer wearable data for the early detection of complications after pediatric appendectomy[J].NPJ Digit Med,2023,6(1): 148.
[22]
Ramkumar PN, Haeberle HS, Navarro SM,et al.Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit[J].J Shoulder Elbow Surg, 2018, 27(7): 1198-1204.
[23]
Burns DM, Leung N, Hardisty M, et al.Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch[J].Physiol Meas, 2018,39(7): 075007.
[24]
Hameed D, Sodhi N, Dubin J,et al.Integrating Smartphone Applications and Wearable Devices for Postoperative Rehabilitation in Total Knee Arthroplasty: A Critical Review[J].J Arthroplasty,2024,39(8): 2028-2039,e1.
[25]
Isleem UN, Zaidat B, Ren R,et al.Can generative artificial intelligence pass the orthopaedic board examination?[J].J Orthop, 2024,53: 27-33.
[26]
Chandra K, Ghilzai U, Lawand J,et al.Improving Readability of Shoulder and Elbow Surgery Online Patient Education Material with Chat Generative Pretrained Transformer (ChatGPT) 4[J].J Shoulder Elbow Surg, 2025,19:S1058-2746(25)00244-7.
[27]
Stadler RD, Sudah SY, Menendez ME.Identification of ChatGPTGenerated Abstracts Within Shoulder and Elbow Surgery Poses a Challenge for Reviewers[J].Arthroscopy, 2025,41(4): 916-924,e2.
[28]
Radanliev P, Santos O, Brandon-Jones A, et al.Ethics and responsible AI deployment[J].Front Artif Intell, 2024,7:1377011.
[29]
Zhang Z, Hu B, Zhou J, et al.Integrating AI into clinical education:evaluating general practice trainees' proficiency in distinguishing AI-generated hallucinations and impacting factors[J].BMC Med Educ, 2025,25(1): 406.
[30]
Dumit J, Roepstorff A.AI hallucinations are a feature of LLM design, not a bug[J].Nature, 2025,639(8053): 38.
[31]
Ozdag Y, Mahmound M, Mayers Y, et al.Comparison of Artificial Intelligence to Resident Performance on Upper-Extremity Orthopaedic In-Training Examination Questions[J].J Hand Surg Glob Online, 2024,6(2): 164-168.
[1] 孙舒涵, 陈雅静, 宗晴晴, 栗翠英, 缪殊妹, 杨斌, 俞飞虹. 基于超声的深度学习列线图预测乳腺癌新辅助化疗后腋窝淋巴结状态的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 97-105.
[2] 李田香, 赵瑞娜, 康琳, 毕江涵, 陈聪, 杨萌. 基于超声的影像组学模型对老年人肌少症的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(01): 70-78.
[3] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[4] 庄文博, 胡越, 陈沁豪, 商莉, 张逸天, 桂海军. 卷积神经网络辅助三维头影解剖标志自动化目标检测的研究与应用进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 70-74.
[5] 殷萍, 钟文涛, 张杰, 苏惠, 李娜, 王筱君, 杜峻峰, 郝雪梅. 机器人辅助腹腔镜联合胃镜胃间质瘤切除术的手术中管理[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 302-304.
[6] 陈洁莹, 许晶莹, 黄泽萍. 超声在女性压力性尿失禁诊断与疗效评估中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 14-20.
[7] 张悦, 张可, 邓锶锶, 向青, 郭亚豪, 曹键, 罗涛, 孟占鳌. 深度学习图像重建三低方案在肾动脉血管成像中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 76-82.
[8] 张铭杰, 李梦娜, 程明瑶, 王宇亮, 粘永健, 赵瑞臣, 杨宇, 刘慕源, 廖元, 唐超. 高原肺水肿肺超声筛查深度学习模型构建与优化[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 68-73.
[9] 夏永旭, 林元强, 王辉. 多模态超声引导消融治疗周围型肺癌研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 176-179.
[10] 彭子洋, 王志博, 巴赫, 颜彦, 彭浩茜, 李宇, 刘学民, 向俊西, 吴荣谦, 吕毅. 增强现实、虚拟现实与混合现实在腔镜肝脏外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 13-17.
[11] 尹泽新, 杨继林, 李有尧, 吴美龙, 刘利平. 肝癌微血管侵犯的术前预测研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 128-134.
[12] 吴骎, 王波, 尹万红, 廖雪莲, 郭军, 陶攀, 康焰. 人工智能爆发增长背景下的重症医学发展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 36-41.
[13] 范文文, 范晓娟, 白桦, 张红梅, 王洁. 医学成像和放射治疗中的AI 治理审查框架[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 973-979.
[14] 梁博宇, 宋宏萍, 宋张骏, 巨艳, 王虎霞, 薛文欣. 人工智能辅助乳腺影像学检查造成的自动偏差[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 1061-1065.
[15] 马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.
阅读次数
全文


摘要