切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 377 -381. doi: 10.3877/cma.j.issn.2095-5790.2023.04.014

综述

肩峰下滑囊在肩袖损伤修复中的研究进展
刘远, 张马莉, 高鹏, 曾塬杰, 王靖()   
  1. 410000 长沙,湖南省人民医院骨关节与运动医学科
    410000 长沙,湖南省人民医院骨关节与运动医学科;410000 长沙,湖南省运动医学临床医学研究中心
  • 收稿日期:2023-05-04 出版日期:2023-11-05
  • 通信作者: 王靖
  • 基金资助:
    湖南省重点研发项目(2020SK2117); 湖南省卫健委2022年科研项目(202204073112)

Research progress of subacromial capsule in rotator cuff repair

Yuan Liu, Mali Zhang, Peng Gao   

  • Received:2023-05-04 Published:2023-11-05
引用本文:

刘远, 张马莉, 高鹏, 曾塬杰, 王靖. 肩峰下滑囊在肩袖损伤修复中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2023, 11(04): 377-381.

Yuan Liu, Mali Zhang, Peng Gao. Research progress of subacromial capsule in rotator cuff repair[J/OL]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2023, 11(04): 377-381.

肩峰下滑囊是引起肩痛的重要原因之一,而肩峰下减压术也常用于缓解肩部疼痛。关节镜下肩袖修补术也常为获得更好的手术视野以及减轻肩峰下滑囊炎症引起的疼痛而将肩峰下滑囊清理。最新研究表明,肩峰下滑囊富含间充质干细胞,具有损伤修复的潜能,为肩袖损伤修复提供了新的研究方向。肩峰下滑囊不仅是疼痛参与者,也是一个潜在的治疗靶点。但肩袖修补术中如何处理保留肩峰下滑囊引起的炎症与疼痛反应,还需要更多的研究。本文在此基础上综述了肩峰下滑囊对于肩袖损伤修复的意义,并为肩袖损伤提供新的临床治疗依据。

表1 潜在的治疗靶点
[1]
Uhthoff HK, Sarkar K. Surgical repair of rotator cuff ruptures. The importance of the subacromial bursa[J]. J Bone Joint Surg Br, 1991, 73(3): 399-401.
[2]
Chillemi C, Petrozza V, Franceschini V, et al. The role of tendon and subacromial bursa in rotator cuff tear pain: a clinical and histopathological study[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(12): 3779-3786.
[3]
Jaeger M, Berndt T, Ruhmann O, et al. Patients With Impingement Syndrome With and Without Rotator Cuff Tears Do Well 20 YearSAfter Arthroscopic Subacromial Decompression[J]. Arthroscopy, 2016, 32(3): 409-415.
[4]
Beard DJ, Rees JL, Cook JA, et al. Arthroscopic subacromial decompression for subacromial shoulder pain (CSAW): a multicentre, pragmatic, parallel group, placebo-controlled, three-group, randomised surgical trial[J]. The Lancet, 2018, 391(10118): 329-338.
[5]
Nam JH, Park S, Lee HR, et al. OutcomeSAfter Limited oRExtensive Bursectomy During Rotator Cuff Repair: Randomized Controlled Trial[J]. Arthroscopy, 2018, 34(12): 3167-3174.
[6]
Kennedy MS, Nicholson HD, Woodley SJ. The morphology of the subacromial and related shoulder bursae. An anatomical and histological study[J]. J Anat, 2022, 240(5): 941-958.
[7]
Rossi LA, Ranalletta M. Subacromial Decompression Is Not Beneficial for the Management of Rotator Cuff Disease[J]. JBJS Rev, 2020, 8(1): e0045.
[8]
Utsunomiya H, Uchida S, Sekiya I, et al. Isolation and characterization of human mesenchymal stem cells derived froMShoulder tissues involved in rotator cuff tears[J]. Am J Sports Med, 2013, 41(3): 657-668.
[9]
Põldoja E, Rahu M, Kask K, et al. Blood supply of the subacromial bursa and rotator cuff tendons on the bursal side[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 25(7): 2041-2046.
[10]
Morikawa D, Johnson JD, Kia C, et al. Examining the Potency of Subacromial Bursal CellSASA Potential Augmentation for Rotator Cuff Healing: An In Vitro Study[J]. Arthroscopy, 2019, 35(11): 2978-2988.
[11]
Freislederer F, Dittrich M, Scheibel M. Biological Augmentation With Subacromial Bursa in Arthroscopic Rotator Cuff Repair[J]. Arthrosc Tech, 2019, 8(7): e741-e747.
[12]
Bhatia DN. Arthroscopic Bursa-Augmented Rotator Cuff Repair: A Vasculature-preserving Technique for Subacromial Bursal Harvest and Tendon Augmentation[J]. Arthrosc Tech, 2021, 10(5): e1203-e1209.
[13]
Dei Giudici L, Castricini R. Local Autologous Stem CellSApplication in Rotator Cuff Repairs: "LASCA" Technique[J]. Arthrosc Tech, 2020, 9(10): e1571-e1575.
[14]
Pancholi N, Gregory JM. Biologic Augmentation of Arthroscopic Rotator Cuff Repair Using Minced Autologous Subacromial Bursa[J]. Arthrosc Tech, 2020, 9(10): e1519-e1524.
[15]
Wellington IJ, Hawthorne BC, Messina JC, et al. Efficacy of Arthroscopic Shavers for the Retrieval anDProcessing of Connective Tissue Progenitor Cells froMSubacromial Bursal Tissue[J]. J Clin Med, 2022, 11(5) :1272.
[16]
Muench LN, Kia C, Berthold DP, et al. Preliminary Clinical Outcomes Following Biologic Augmentation of Arthroscopic Rotator Cuff Repair Using Subacromial Bursa, Concentrated Bone Marrow Aspirate, anDPlatelet-Rich Plasma[J]. Arthrosc Sports Med Rehabil, 2020, 2(6): e803-e813.
[17]
Galatz LM, Ball CM, Teefey SA, et al. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears[J]. J Bone Joint Surg Am, 2004, 86(2): 219-224.
[18]
Dochev AD, Muller SA, Majewski M, et al. Biologics for tendon repair[J]. Adv Drug Deliv Rev, 2015, 84: 222-239.
[19]
Song N, Armstrong AD, Li F, et al. Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering[J]. Tissue Eng Part A, 2014, 20(1-2): 239-249.
[20]
Aydin A, Duruksu G, Erman G, et al. Neurogenic differentiation capacity of subacromial bursal tissue-derived stem cells[J]. J Orthop Res, 2014, 32(1): 151-158.
[21]
Dyrna F, Zakko P, Pauzenberger L, et al. Human Subacromial Bursal Cells Display SuperioREngraftment Versus Bone Marrow Stromal Cells in Murine Tendon Repair[J]. Am J Sports Med, 2018, 46(14): 3511-3520.
[22]
Sun Y, Kwak JM, Kholinne E, et al. Subacromial bursal preservation can enhance rotator cuff tendon regeneration: a comparative rat supraspinatus tendon defect model study[J]. J Shoulder Elbow Surg, 2021, 30(2): 401-407.
[23]
Morikaw AD, Muench LN, Baldino JB, et al. Comparison of Preparation Techniques for Isolating Subacromial Bursa-Derived CellSASA Potential Augment for Rotator Cuff Repair[J]. Arthroscopy, 2020, 36(1): 80-85.
[24]
Morikaw AD, Hawthorne BC, Mccarthy MBR, et al. Analysis of Patient FactorSAffecting In Vitro Characteristics of Subacromial Bursal Connective Tissue Progenitor Cells during Rotator Cuff Repair[J]. J Clin Med, 2021, 10(17) :4006.
[25]
Muench LN, Baldino JB, Berthold DP, et al. Subacromial Bursa-Derived Cells Demonstrate High Proliferation Potential Regardless of Patient DemographicSAnd Rotator Cuff Tear Characteristics[J]. Arthroscopy, 2020, 36(11): 2794-2802.
[26]
Lu V, Tennyson M, Zhang J, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies[J]. Cells, 2021, 10(10) :2553.
[27]
Sun H, Pratt RE, Hodgkinson CP, et al. Sequential paracrine mechanismSAre necessary for the therapeutic benefits of stem cell therapy[J]. Am J Physiol Cell Physiol, 2020, 319(6): C1141-C1150.
[28]
Zhang X, Han Z, Han K, et al. Loading Mesenchymal Stem Cell-Derived Exosomes Into a Traditionally Designed Rotator Cuff Patch: A Potential Strategy to Enhance the Repair of Chronic Rotator Cuff Tear Associated WitHDegenerative Changes[J]. Am J Sports Med, 2022, 50(8): 2234-2246.
[29]
Wang C, Tan J, Zhang Y, et al. In Situ-Forming Fibrin Gel Encapsulation of MSC-Exosomes for Partial-Thickness Rotator Cuff Tears in a Rabbit Model: Effectiveness Shown in Preventing Tear Progression anDPromoting Healing[J]. J Bone Joint Surg Am, 2022, 104(16): 1492-1502.
[30]
Baldino JB, Muench LN, Kia C, et al. Intraoperative and In Vitro Classification of Subacromial Bursal Tissue[J]. Arthroscopy, 2020, 36(8): 2057-2068.
[31]
Choi CH, Kwon DG, Oh HK, et al. Histological changeSAnd neural elements in the subacromial bursa on patients with rotator cuff tear: Pilot study[J]. Medicine (Baltimore), 2022, 101(27): e29898.
[32]
Tamburini LM, Levy BJ, Mccarthy MB, et al. The interaction between human rotator cuff tendon and subacromial bursal tissue in co-culture[J]. J Shoulder Elbow Surg, 2021, 30(7): 1494-1502.
[33]
Minkwitz S, Thiele K, Schmock A, et al. Histological and molecular features of the subacromial bursa of rotator cuff tears compared to non-tendon defects: a pilot study[J]. BMC Musculoskelet Disord, 2021, 22(1): 877.
[34]
Tazawa R, Kenmoku T, Uchida K, et al. Increased nerve growth factoRExpression in the synovial tissues of patients with rotator cuff tears[J]. Mol Pain, 2021, 17: 17448069211021252.
[35]
Nagura N, Uchida K, Kenmoku T, et al. IL-1beta mediates NGF and COX-2 expression through transforming growth factor-activating kinase 1 in subacromial bursa cells derived from rotator cuff tear patients[J]. J Orthop Sci, 2019, 24(5): 925-929.
[36]
Su X, Li Z, Liu Z, et al. Effects of high- and low-energy radial shock waves therapy combined with physiotherapy in the treatment of rotator cuff tendinopathy: a retrospective study[J]. Disabil Rehabil, 2018, 40(21): 2488-2494.
[37]
Millar NL, Murrell GA, Mcinnes IB. Inflammatory mechanisms in tendinopathy - towards translation[J]. Nat Rev Rheumatol, 2017, 13(2): 110-122.
[38]
Zou J, Yang W, Cui W, et al. TherapeutiCPotential and mechanisms of mesenchymal stem cell-derived exosomeSAs bioactive materials in tendon-bone healing[J]. J Nanobiotechnology, 2023, 21(1): 14.
[39]
Blomgran P, Hammerman M, Aspenberg P. Systemic corticosteroids improve tendon healing when given after the early inflammatory phase[J]. Sci Rep, 2017, 7(1): 12468.
[40]
Feng H, He Z, Twomey K, et al. Epigallocatechin-3-gallate suppresses pain-related anDProinflammatory mediators in the subacromial bursa in rotator cuff tendinopathy[J]. Discov Med, 2019, 27(147): 63-77.
[41]
Bélanger P, West CR, Brown MT. Development of pain therapies targeting nerve growth factor signal transduction and the strategies used to resolve safety issues[J]. J Toxicol Sci, 2018, 43(1): 1-10.
[42]
Su W, Li X, Zhao S, et al. Native Enthesis Preservation Versus Removal in Rotator Cuff Repair in a Rabbit Model[J]. Arthroscopy, 2018, 34(7): 2054-2062.
[1] 许亚龙, 巩栋, 陈晓涛. 超前镇痛在全膝关节置换术中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 517-523.
[2] 宋玟焱, 杜美君, 陈佳丽, 石冰, 黄汉尧. 唇腭裂手术围手术期疼痛管理的研究进展及基于生物材料治疗新方法的展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 397-405.
[3] 易颖煜, 朱亚琴. 口颌面疼痛的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(05): 300-306.
[4] 杜伟, 廖土明, 李雄才, 关刚强, 何燊, 吴佳桥, 朱和荣. 2%利多卡因凝胶和润滑剂凝胶在女性尿流动力学检查中应用的随机对照研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 613-617.
[5] 闫亚飞, 范学圣, 张舰, 吴勇. 经腹腹膜前疝修补术治疗复发腹股沟疝的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 552-556.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[10] 曲洋, 蒋浩然, 邢博涵, 张蒙, 张培训. 肩袖损伤的治疗进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 289-291.
[11] 严肃, 束昊, 吉同岳, 孙鲁宁. 肱二头肌长头腱切断与保留对中老年患者的中、小型退变性肩袖撕裂修补术后疗效影响[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 309-318.
[12] 谢娜, 纪东旭, 刘晨, 徐峰. 肩肱距离在肩痛患者诊断和治疗决策中的作用:一项回顾性的病例对照研究[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 326-331.
[13] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?