[1] |
Uhthoff HK, Sarkar K. Surgical repair of rotator cuff ruptures. The importance of the subacromial bursa[J]. J Bone Joint Surg Br, 1991, 73(3): 399-401.
|
[2] |
Chillemi C, Petrozza V, Franceschini V, et al. The role of tendon and subacromial bursa in rotator cuff tear pain: a clinical and histopathological study[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(12): 3779-3786.
|
[3] |
Jaeger M, Berndt T, Ruhmann O, et al. Patients With Impingement Syndrome With and Without Rotator Cuff Tears Do Well 20 YearSAfter Arthroscopic Subacromial Decompression[J]. Arthroscopy, 2016, 32(3): 409-415.
|
[4] |
Beard DJ, Rees JL, Cook JA, et al. Arthroscopic subacromial decompression for subacromial shoulder pain (CSAW): a multicentre, pragmatic, parallel group, placebo-controlled, three-group, randomised surgical trial[J]. The Lancet, 2018, 391(10118): 329-338.
|
[5] |
Nam JH, Park S, Lee HR, et al. OutcomeSAfter Limited oRExtensive Bursectomy During Rotator Cuff Repair: Randomized Controlled Trial[J]. Arthroscopy, 2018, 34(12): 3167-3174.
|
[6] |
Kennedy MS, Nicholson HD, Woodley SJ. The morphology of the subacromial and related shoulder bursae. An anatomical and histological study[J]. J Anat, 2022, 240(5): 941-958.
|
[7] |
Rossi LA, Ranalletta M. Subacromial Decompression Is Not Beneficial for the Management of Rotator Cuff Disease[J]. JBJS Rev, 2020, 8(1): e0045.
|
[8] |
Utsunomiya H, Uchida S, Sekiya I, et al. Isolation and characterization of human mesenchymal stem cells derived froMShoulder tissues involved in rotator cuff tears[J]. Am J Sports Med, 2013, 41(3): 657-668.
|
[9] |
Põldoja E, Rahu M, Kask K, et al. Blood supply of the subacromial bursa and rotator cuff tendons on the bursal side[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 25(7): 2041-2046.
|
[10] |
Morikawa D, Johnson JD, Kia C, et al. Examining the Potency of Subacromial Bursal CellSASA Potential Augmentation for Rotator Cuff Healing: An In Vitro Study[J]. Arthroscopy, 2019, 35(11): 2978-2988.
|
[11] |
Freislederer F, Dittrich M, Scheibel M. Biological Augmentation With Subacromial Bursa in Arthroscopic Rotator Cuff Repair[J]. Arthrosc Tech, 2019, 8(7): e741-e747.
|
[12] |
Bhatia DN. Arthroscopic Bursa-Augmented Rotator Cuff Repair: A Vasculature-preserving Technique for Subacromial Bursal Harvest and Tendon Augmentation[J]. Arthrosc Tech, 2021, 10(5): e1203-e1209.
|
[13] |
Dei Giudici L, Castricini R. Local Autologous Stem CellSApplication in Rotator Cuff Repairs: "LASCA" Technique[J]. Arthrosc Tech, 2020, 9(10): e1571-e1575.
|
[14] |
Pancholi N, Gregory JM. Biologic Augmentation of Arthroscopic Rotator Cuff Repair Using Minced Autologous Subacromial Bursa[J]. Arthrosc Tech, 2020, 9(10): e1519-e1524.
|
[15] |
Wellington IJ, Hawthorne BC, Messina JC, et al. Efficacy of Arthroscopic Shavers for the Retrieval anDProcessing of Connective Tissue Progenitor Cells froMSubacromial Bursal Tissue[J]. J Clin Med, 2022, 11(5) :1272.
|
[16] |
Muench LN, Kia C, Berthold DP, et al. Preliminary Clinical Outcomes Following Biologic Augmentation of Arthroscopic Rotator Cuff Repair Using Subacromial Bursa, Concentrated Bone Marrow Aspirate, anDPlatelet-Rich Plasma[J]. Arthrosc Sports Med Rehabil, 2020, 2(6): e803-e813.
|
[17] |
Galatz LM, Ball CM, Teefey SA, et al. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears[J]. J Bone Joint Surg Am, 2004, 86(2): 219-224.
|
[18] |
Dochev AD, Muller SA, Majewski M, et al. Biologics for tendon repair[J]. Adv Drug Deliv Rev, 2015, 84: 222-239.
|
[19] |
Song N, Armstrong AD, Li F, et al. Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering[J]. Tissue Eng Part A, 2014, 20(1-2): 239-249.
|
[20] |
Aydin A, Duruksu G, Erman G, et al. Neurogenic differentiation capacity of subacromial bursal tissue-derived stem cells[J]. J Orthop Res, 2014, 32(1): 151-158.
|
[21] |
Dyrna F, Zakko P, Pauzenberger L, et al. Human Subacromial Bursal Cells Display SuperioREngraftment Versus Bone Marrow Stromal Cells in Murine Tendon Repair[J]. Am J Sports Med, 2018, 46(14): 3511-3520.
|
[22] |
Sun Y, Kwak JM, Kholinne E, et al. Subacromial bursal preservation can enhance rotator cuff tendon regeneration: a comparative rat supraspinatus tendon defect model study[J]. J Shoulder Elbow Surg, 2021, 30(2): 401-407.
|
[23] |
Morikaw AD, Muench LN, Baldino JB, et al. Comparison of Preparation Techniques for Isolating Subacromial Bursa-Derived CellSASA Potential Augment for Rotator Cuff Repair[J]. Arthroscopy, 2020, 36(1): 80-85.
|
[24] |
Morikaw AD, Hawthorne BC, Mccarthy MBR, et al. Analysis of Patient FactorSAffecting In Vitro Characteristics of Subacromial Bursal Connective Tissue Progenitor Cells during Rotator Cuff Repair[J]. J Clin Med, 2021, 10(17) :4006.
|
[25] |
Muench LN, Baldino JB, Berthold DP, et al. Subacromial Bursa-Derived Cells Demonstrate High Proliferation Potential Regardless of Patient DemographicSAnd Rotator Cuff Tear Characteristics[J]. Arthroscopy, 2020, 36(11): 2794-2802.
|
[26] |
Lu V, Tennyson M, Zhang J, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies[J]. Cells, 2021, 10(10) :2553.
|
[27] |
Sun H, Pratt RE, Hodgkinson CP, et al. Sequential paracrine mechanismSAre necessary for the therapeutic benefits of stem cell therapy[J]. Am J Physiol Cell Physiol, 2020, 319(6): C1141-C1150.
|
[28] |
Zhang X, Han Z, Han K, et al. Loading Mesenchymal Stem Cell-Derived Exosomes Into a Traditionally Designed Rotator Cuff Patch: A Potential Strategy to Enhance the Repair of Chronic Rotator Cuff Tear Associated WitHDegenerative Changes[J]. Am J Sports Med, 2022, 50(8): 2234-2246.
|
[29] |
Wang C, Tan J, Zhang Y, et al. In Situ-Forming Fibrin Gel Encapsulation of MSC-Exosomes for Partial-Thickness Rotator Cuff Tears in a Rabbit Model: Effectiveness Shown in Preventing Tear Progression anDPromoting Healing[J]. J Bone Joint Surg Am, 2022, 104(16): 1492-1502.
|
[30] |
Baldino JB, Muench LN, Kia C, et al. Intraoperative and In Vitro Classification of Subacromial Bursal Tissue[J]. Arthroscopy, 2020, 36(8): 2057-2068.
|
[31] |
Choi CH, Kwon DG, Oh HK, et al. Histological changeSAnd neural elements in the subacromial bursa on patients with rotator cuff tear: Pilot study[J]. Medicine (Baltimore), 2022, 101(27): e29898.
|
[32] |
Tamburini LM, Levy BJ, Mccarthy MB, et al. The interaction between human rotator cuff tendon and subacromial bursal tissue in co-culture[J]. J Shoulder Elbow Surg, 2021, 30(7): 1494-1502.
|
[33] |
Minkwitz S, Thiele K, Schmock A, et al. Histological and molecular features of the subacromial bursa of rotator cuff tears compared to non-tendon defects: a pilot study[J]. BMC Musculoskelet Disord, 2021, 22(1): 877.
|
[34] |
Tazawa R, Kenmoku T, Uchida K, et al. Increased nerve growth factoRExpression in the synovial tissues of patients with rotator cuff tears[J]. Mol Pain, 2021, 17: 17448069211021252.
|
[35] |
Nagura N, Uchida K, Kenmoku T, et al. IL-1beta mediates NGF and COX-2 expression through transforming growth factor-activating kinase 1 in subacromial bursa cells derived from rotator cuff tear patients[J]. J Orthop Sci, 2019, 24(5): 925-929.
|
[36] |
Su X, Li Z, Liu Z, et al. Effects of high- and low-energy radial shock waves therapy combined with physiotherapy in the treatment of rotator cuff tendinopathy: a retrospective study[J]. Disabil Rehabil, 2018, 40(21): 2488-2494.
|
[37] |
Millar NL, Murrell GA, Mcinnes IB. Inflammatory mechanisms in tendinopathy - towards translation[J]. Nat Rev Rheumatol, 2017, 13(2): 110-122.
|
[38] |
Zou J, Yang W, Cui W, et al. TherapeutiCPotential and mechanisms of mesenchymal stem cell-derived exosomeSAs bioactive materials in tendon-bone healing[J]. J Nanobiotechnology, 2023, 21(1): 14.
|
[39] |
Blomgran P, Hammerman M, Aspenberg P. Systemic corticosteroids improve tendon healing when given after the early inflammatory phase[J]. Sci Rep, 2017, 7(1): 12468.
|
[40] |
Feng H, He Z, Twomey K, et al. Epigallocatechin-3-gallate suppresses pain-related anDProinflammatory mediators in the subacromial bursa in rotator cuff tendinopathy[J]. Discov Med, 2019, 27(147): 63-77.
|
[41] |
Bélanger P, West CR, Brown MT. Development of pain therapies targeting nerve growth factor signal transduction and the strategies used to resolve safety issues[J]. J Toxicol Sci, 2018, 43(1): 1-10.
|
[42] |
Su W, Li X, Zhao S, et al. Native Enthesis Preservation Versus Removal in Rotator Cuff Repair in a Rabbit Model[J]. Arthroscopy, 2018, 34(7): 2054-2062.
|