切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 297 -303. doi: 10.3877/cma.j.issn.2095-5790.2023.04.002

述评

数字骨科助力肩关节置换术的发展
刘洋, 周君琳()   
  1. 100020 首都医科大学附属北京朝阳医院骨科
  • 收稿日期:2023-10-22 出版日期:2023-11-05
  • 通信作者: 周君琳
  • 基金资助:
    北京市临床重点专科项目经费资助(BJYQFZ-2022)

Digital orthopedics technology assists the development of shoulder arthroplasty

Yang Liu, Junlin Zhou()   

  • Received:2023-10-22 Published:2023-11-05
  • Corresponding author: Junlin Zhou
引用本文:

刘洋, 周君琳. 数字骨科助力肩关节置换术的发展[J]. 中华肩肘外科电子杂志, 2023, 11(04): 297-303.

Yang Liu, Junlin Zhou. Digital orthopedics technology assists the development of shoulder arthroplasty[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2023, 11(04): 297-303.

数字化骨科技术的发展,极大地促进了骨科领域个性化、智能化、精准化、微创化等诊疗技术的进步,已经成为骨科领域的最重要创新和转化技术。肩关节置换术领域一直在研究各种数字化技术方法,以帮助外科医生更好地了解相关的病损和畸形,计划假体的放置、型号和手术方式,并准确地执行手术计划,以达到假体的精确性、关节的良好对线和稳定、延长假体的使用寿命,最终改善患者的预后。迄今,在肩关节置换术领域最关键的数字骨科技术进展包括术前规划三维计算机断层扫描肩胛骨重建、患者特异性专用器械、术中导航和混合现实技术等。尽管对于这些技术中的哪一种将成为金标准仍不确定,但这个领域很可能代表着肩关节置换术的未来,肩关节外科医生有必要了解所有相关技术。本文重点介绍这些数字骨科技术在肩关节置换术中的应用进展和相关文献。

[1]
Iannotti JP, Spencer EE, Winter U,et al. Prosthetic positioning in total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2005, 14 (1 Suppl S):111S-121S.
[2]
Singh JA, Sperling J, Buchbinder R,et al. Surgery for shoulder osteoarthritis: a Cochrane systematic review[J]. Rheumatol,2011,38(4):598-605.
[3]
Frankle M, Levy JC, Pupello D,et al. The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency. a minimum two-year follow-up study of sixty patients[J]. J Bone Joint Surg Am, 2005, 87(8):1697-1705.
[4]
Piper C, Neviaser A. Survivorship of anatomic total shoulder arthroplasty[J]. Am Acad Orthop Surg,2022,30(10):457-465.
[5]
Chelli M, Boileau P, Domos P,et al. Survivorship of reverse shoulder arthroplasty according to indication, age and gender[J]. Clin Med,2022,11(10):2677.
[6]
Bohsali KI, Bois AJ, Wirth MA. Complications of Shoulder Arthroplasty[J]. J Bone Joint Surg Am, 2017, 99(3):256-269.
[7]
Boileau P. Complications and revision of reverse total shoulder arthroplasty[J]. Orthop Traumatol Surg Res, 2016,102(1 Suppl):S33-43.
[8]
Fox TJ, Foruria AM, Klika BJ,et al. Radiographic survival in total shoulder arthroplasty[J]. J Shoulder Elbow Surg,2013,22(9):1221-1227.
[9]
McBride AP, Ross M, Duke P, et al. Shoulder joint arthroplasty in young patients: Analysis of 8742 patients from the Australian Orthopaedic Association National Joint Replacement Registry[J]. Shoulder Elbow2023, 15(1 Suppl):41-52.
[10]
Farron A, Terrier A, Buchler P. Risks of loosening of a prosthetic glenoid implanted in retroversion[J]. J Shoulder Elbow Surg,2006,15(4):521-526.
[11]
Shapiro TA, McGarry MH, Gupta R,et al. Biomechanical effects of glenoid retroversion in total shoulder arthroplasty[J]. J Shoulder Elbow Surg,2007,16(3 Suppl):S90-95.
[12]
Ho JC, Sabesan VJ, Iannotti JP. Glenoid component retroversion is associated with osteolysis[J]. J Bone Joint Surg Am, 2013,95(12):e82.
[13]
Chebli C, Huber P, Watling J, et al. Factors affecting fixation of the glenoid component of a reverse total shoulder prothesis[J]. J Shoulder Elbow Surg,2008,17(2):323,327.
[14]
Nyffeler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis[J]. J Shoulder Elbow Surg,2005,14(5):524-528.
[15]
Bitzer A, Rojas J, Patten IS,et al. Incidence and risk factors for aseptic baseplate loosening of reverse total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2018, 27(12):2145-2152.
[16]
Codsi MJ, Iannotti JP. The effect of screw position on the initial fixation of a reverse total shoulder prosthesis in a glenoid with a cavitary bone defect[J]. J Shoulder Elbow Surg,2008,17(3):479-486.
[17]
Roche C, DiGeorgio C, Yegres J,et al. Impact of screw length and screw quantity on reverse total shoulder arthroplasty glenoid fixation for 2 different sizes of glenoid baseplates[J]. JSES Open Access,2019,3(4):296-303.
[18]
James J, Allison MA, Werner FW,et al. Reverse shoulder arthroplasty glenoid fixation: is there a benefit in using four instead of two screws?[J]. J Shoulder Elbow Surg,2013,22(8):1030-1036.
[19]
Papadonikolakis A, Neradilek MB, Matsen FA 3rd. Failure of the glenoid component in anatomic total shoulder arthroplasty: a systematic review of the English-language literature between 2006 and 2012[J]. J Bone Joint Surg Am,2013,95(24):2205-2212.
[20]
Iannotti JP, Greeson C, Downing D,et al. Effect of glenoid deformity on glenoid component placement in primary shoulder arthroplasty[J]. J Shoulder Elbow Surg,2012,21(1):48-55.
[21]
Jain N, Pietrobon R, Hocker S,et al. The relationship between surgeon and hospital volume and outcomes for shoulder arthroplasty[J]. J Bone Joint Surg Am,2004,86(3):496-505.
[22]
Singh A, Yian EH, Dillon MT,et al. The effect of surgeon and hospital volume on shoulder arthroplasty perioperative quality metrics[J]. J Shoulder Elbow Surg, 2014, 23(8):1187-1194.
[23]
Lowe JT, Testa EJ, Li X,et al. Magnetic resonance imaging is comparable to computed tomography for determination of glenoid version but does not accurately distinguish between Walch B2 and C classifications[J]. J Shoulder Elbow Surg,2017,26(4): 669-673.
[24]
Nerot C, Ohl X. Primary shoulder reverse arthroplasty: surgical technique[J]. Orthop Traumatol Surg Res,2014, 100(1 Suppl):S181-190.
[25]
Maurer A, Fucentese SF, Pfirrmann CW,et al. Assessment of glenoid inclination on routine clinical radiographs and computed tomography examinations of the shoulder[J]. J Shoulder Elbow Surg,2012,21(8):1096-1103.
[26]
Scalise JJ, Codsi MJ, Bryan J,et al. The influence of three-dimensional computed tomography images of the shoulder in preoperative planning for total shoulder arthroplasty[J]. J Bone Joint Surg Am,2008, 90(11):2438-2445.
[27]
Bryce CD, Davison AC, Lewis GS,et al. Two-dimensional glenoid version measurements vary with coronal and sagittal scapular rotation[J]. J Bone Joint Surg Am,2010,92(3):692-699.
[28]
Kwon YW, Powell KA, Yum JK ,et al. Use of three-dimensional computed tomography for the analysis of the glenoid anatomy[J]. J Shoulder Elbow Surg, 2005, 14(1):85-90.
[29]
Bokor DJ, O'Sullivan MD, Hazan GJ. Variability of measurement of glenoid version on computed tomography scan[J]. J Shoulder Elbow Surg,1999,8(6): 595-598.
[30]
Scalise JJ, Codsi MJ, Bryan J,et al. The three-dimensional glenoid vault model can estimate normal glenoid version in osteoarthritis[J]. J Shoulder Elbow Surg, 2008, 17(3):487-491.
[31]
Nowak DD, Bahu MJ, Gardner TR,et al. Simulation of surgical glenoid resurfacing using three-dimensional computed tomography of the arthritic glenohumeral joint: the amount of glenoid retroversion that can be corrected[J]. J Shoulder Elbow Surg, 2009, 18(5):680-688.
[32]
Clavert P, Millett PJ, Warner JJ. Glenoid resurfacing: what are the limits to asymmetric reaming for posterior erosion?[J]. J Shoulder Elbow Surg,2007,16(6):843-848.
[33]
Sabesan V, Callanan M, Ho J,et al. Clinical and radiographic outcomes of total shoulder arthroplasty with bone graft for osteoarthritis with severe glenoid bone loss[J]. J Bone Joint Surg Am,2013, 95(14):1290-1296.
[34]
Knowles NK, Ferreira LM, Athwal GS. Augmented glenoid component designs for type B2 erosions: Jennewine & Brolin 222a computational comparison by volume of bone removal and quality of remaining bone[J]. J Shoulder Elbow Surg, 2015, 24(8):1218-1226.
[35]
Rosenthal Y, Rettig SA, Virk MS,et al. Impact of preoperative 3-dimensional planning and intraoperative navigation of shoulder arthroplasty on implant selection and operative time: a single surgeon's experience[J]. J Shoulder Elbow Surg, 2020, 29(12):2564-2570.
[36]
Jacquot A, Gauci MO, Chaoui J,et al. Proper benefit of a three dimensional pre-operative planning software for glenoid component positioning in total shoulder arthroplasty[J]. Int Orthop, 2018, 42(12):2897-2906.
[37]
Throckmorton TW, Gulotta LV, Bonnarens FO ,et al. Patient-specific targeting guides compared with traditional instrumentation for glenoid component placement in shoulder arthroplasty: a multisurgeon study in 70 arthritic cadaver specimens[J]. J Shoulder Elbow Surg,2015,24(6):965-971.
[38]
Berhouet J, Gulotta LV, Dines DM,et al. Preoperative planning for accurate glenoid component positioning in reverse shoulder arthroplasty[J]. Orthop Traumatol Surg Res,2017,103(3):407-413.
[39]
Berhouet J, Jacquot A, Walch G,et al. Preoperative planning of baseplate position in reverse shoulder arthroplasty: still no consensus on lateralization, version and inclination[J]. Orthop Traumatol Surg Res, 2022,108(3):103115.
[40]
Giannotti S, Sacchetti F, Citarelli C,et al. Singleuse, patient-specific instrumentation technology in knee arthroplasty: a comparative study between standard instrumentation and PSI efficiency system[J]. Musculoskelet Surg,2020,104(2):195-200.
[41]
Gomes NS. Patient-specific instrumentation for total shoulder arthroplasty[J]. EFORT Open Rev,2017,1(5):177-182.
[42]
Yam MGJ, Chao JYY, Leong C, et al. 3D printed patient specific customised surgical jig for reverse shoulder arthroplasty, a cost effective and accurate solution[J]. Clin Orthop Trauma,2021,21:101503.
[43]
Leafblad N, Asghar E, Tashjian RZ. Innovations in shoulder arthroplasty[J]. Clin Med,2022,11:2799.
[44]
Hendel MD, Bryan JA, Barsoum WK,et al. Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial[J]. J Bone Joint Surg Am,2012,94(23): 2167-2175.
[45]
Iannotti JP, Weiner S, Rodriguez E,et al. Three-dimensional imaging and templating improve glenoid implant positioning[J]. J Bone Joint Surg Am,2015,97(8):651-658.
[46]
Cabarcas BC, Cvetanovich GL, Gowd AK,et al. Accuracy of patient-specific instrumentation in shoulder arthroplasty: a systematic review and metaanalysis[J]. JSES Open Access,2019,3(3):117-129.
[47]
Villatte G, Muller AS, Pereira B,et al. Use of patientspecific instrumentation (PSI) for glenoid component positioning in shoulder arthroplasty. A systematic review and meta-analysis[J]. PLoS One, 2018, 13(8): e0201759.
[48]
Walch G, Vezeridis PS, Boileau P,et al. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study[J]. J Shoulder Elbow Surg,2015,24(2): 302-309.
[49]
Davis ET, Gallie P, Macgroarty K,et al. The accuracy of image-free computer navigation in the placement of the femoral component of the Birmingham Hip Resurfacing: a cadaver study[J]. J Bone Joint Surg Br,2007,89(4):557-560.
[50]
Lützner J, Krummenauer F, Wolf C,et al. Computer-assisted and conventional total knee replacement: a comparative, prospective, randomised study with radiological and CT evaluation[J]. J Bone Joint Surg Br,2008,90(8):1039-1044.
[51]
Victor J, Hoste D. Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment[J]. Clin Orthop Relat Res,2004,428:131-139.
[52]
Verborgt O, Vanhees M, Heylen S,et al. Computer navigation and patient-specific instrumentation in shoulder arthroplasty[J]. Sports Med Arthrosc Rev,2014,22(4):e42-49.
[53]
Edwards TB, Gartsman GM, O’Connor DP,et al. Safety and utility of computer-aided shoulder arthroplasty[J]. J Shoulder Elbow Surg,2008,17(3): 503-508.
[54]
Nguyen D, Ferreira LM, Brownhill JR,et al. Improved accuracy of computer assisted glenoid implantation in total shoulder arthroplasty: an invitro randomized controlled trial[J]. J Shoulder Elbow Surg,2009,18(6):907-914.
[55]
Aminov O, Regan W, Giles JW,et al. Targeting repeatability of a less obtrusive surgical navigation procedure for total shoulder arthroplasty[J]. Int J Comput Assist Radiol Surg,2022,17(2):283-293.
[56]
Colasanti GB, Moreschini F, Cataldi C,et al. GPS guided reverse shoulder arthroplasty[J]. Acta Biomed,2020,91(4-S):204-208.
[57]
Verborgt O, De Smedt T, Vanhees M,et al. Accuracy of placement of the glenoid component in reversed shoulder arthroplasty with and without navigation[J]. J Shoulder Elbow Surg, 2011, 20(1):21-26.
[58]
Kircher J, Wiedemann M, Magosch P,et al. Improved accuracy of glenoid positioning in total shoulder arthroplasty with intraoperative navigation: a prospective-randomized clinical study[J]. J Shoulder Elbow Surg, 2009, 18(4):515-520.
[59]
Wang AW, Hayes A, Gibbons R,et al. Computer navigation of the glenoid component in reverse total shoulder arthroplasty: a clinical trial to evaluate the learning curve[J]. J Shoulder Elbow Surg,2020,29(3):617-623.
[60]
Sadoghi P, Vavken J, Leithner A,et al. Benefit of intraoperative navigation on glenoid component positioning during total shoulder arthroplasty[J].Arch Orthop Trauma Surg,2015,135(1):41-47.
[61]
Burns DM, Frank T, Whyne CM,et al. Glenoid component positioning and guidance techniques in anatomic and reverse total shoulder arthroplasty: A systematic review and meta-analysis[J]. Shoulder Elbow,2019,11(2 Suppl):16-28.
[62]
Moreschini F, Colasanti GB, Cataldi C,et al. Preoperative CT-based planning integrated with intra-operative navigation in reverse shoulder arthroplasty: data acquisition and analysis protocol, and preliminary results of navigated versus conventional surgery[J]. Dose Response,2020,18(4).1559325820970832.
[63]
Hones KM, King JJ, Schoch BS,et al. The in vivo impact of computer navigation on screw number and length in reverse total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2021, 30(10): e629-635.
[64]
Sprowls GR, Wilson CD, Stewart W,et al. Intraoperative navigation and preoperative templating software are associated with increased glenoid baseplate screw length and use of augmented baseplates in reverse total shoulder arthroplasty[J]. JSES Int,2020,5(1):102-108.
[65]
Schoch BS, Haupt E, Leonor T,et al. Computer navigation leads to more accurate glenoid targeting during total shoulder arthroplasty compared with 3-dimensional preoperative planning alone[J]. J Shoulder Elbow Surg,2020,29(11):2257-2263.
[66]
Jud L, Fotouhi J, Andronic O,et al. Applicability of augmented reality in orthopedic surgery —— a systematic review[J]. BMC Musculoskelet Disord,2020,21(1):103.
[67]
Berhouet J, Slimane M, Facomprez M,et al. Views on a new surgical assistance method for implanting the glenoid component during total shoulder arthroplasty. Part 2: From three-dimensional reconstruction to augmented reality: feasibility study[J]. Orthop Traumatol Surg Res,2019,105(2): 211-218.
[68]
Kriechling P, Loucas R, Loucas M ,et al. Augmented reality through head——mounted display for navigation of baseplate component placement in reverse total shoulder arthroplasty: a cadaveric study[J]. Arch Orthop Trauma Surg,2023,143(1):169-175.
[69]
Kriechling P, Roner S, Liebmann F,et al. Augmented reality for base plate component placement in reverse total shoulder arthroplasty: a feasibility study[J]. Arch Orthop Trauma Surg,2021,141(9):1447-1453.
[70]
Gregory TM, Gregory J, Sledge J ,et al. Surgery guided by mixed reality: presentation of a proof of concept[J]. Acta Orthop,2018,89(5):480-483.
[71]
Rojas JT, Lädermann A, Ho SWL,et al. Glenoid component placement assisted by augmented reality through a head-mounted display during reverse shoulder arthroplasty[J]. Arthrosc Tech,2022,11(5):e863-874.
[1] 邓志平, 张清, 李卓宇, 刘巍峰. 应用计算机导航辅助重建股骨远段恶性肿瘤行骨干节段性切除后缺损的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 381-386.
[2] 刘颂, 胡琼源, 陆晓峰, 管文贤. 吲哚菁绿用于外科术中神经显影的现状与展望[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 226-229.
[3] 刘颂, 宋鹏, 艾世超, 杨志, 王萌, 陆晓峰, 管文贤. 双示踪导航腹腔镜胃癌根治术的单臂开放前瞻性研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(06): 647-650.
[4] 张琳, 吴波, 王东文. 前列腺癌特异性近红外荧光探针的研究进展与展望[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 6-11.
[5] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[6] 李映安, 晋云, 储心昀, 胡苹苹, 王峻峰. 混合现实技术在腹腔镜肝切除术中导航的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 401-406.
[7] 陆乔友, 寸冬云, 虞弘, 郭鹏恒, 田大广. ICG荧光胆道造影在胆囊结石合并胆囊炎患者LC术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 284-288.
[8] 王祎, 王峻峰, 杨超, 晋云, 胡苹苹. 数字医学技术在肝脏分段及解剖性肝切除中的应用现状[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 16-21.
[9] 秦士吉, 朱燕宾, 李计东, 陈伟, 付蕾, 杨思繁, 张奇, 张英泽. 跟骨关节内移位骨折精准微创手术技术要点[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 88-91.
[10] 姜佳慧, 毕鸿雁. 基于虚拟现实技术施经颅直流电刺激对脑卒中患者上肢功能影响的Meta分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 75-83.
[11] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[12] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
[13] 黄爱茹, 付婧, 余茜. 多模块3D虚拟现实技术联合重复经颅磁刺激治疗卒中后认知功能障碍的效果[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1089-1095.
[14] 索源, 曹伟, 杨书聪, 杨成, 周宇立, 郁慧杰. 沉浸式虚拟现实结合高仿真伤情化妆技术在创伤紧急医学救治培训中的应用效果评价[J]. 中华卫生应急电子杂志, 2023, 09(02): 85-89.
[15] 常飞飞, 曹迎春, 吴晓冰, 王晓涵. 基于虚拟现实技术任务导向性训练对脑卒中多病共存患者功能状态的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 124-129.
阅读次数
全文


摘要