切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2023, Vol. 11 ›› Issue (03) : 273 -278. doi: 10.3877/cma.j.issn.2095-5790.2023.03.012

综述

生物材料增强肩袖腱骨愈合的研究进展
文华伟, 汤明, 方禹舜, 李亚楠, 张绍华, 张青松()   
  1. 430030 武汉市第四医院运动医学科;430030 武汉,湖北省运动医学中心
  • 收稿日期:2023-06-08 出版日期:2023-08-05
  • 通信作者: 张青松
  • 基金资助:
    湖北省自然科学基金一般面上项目(2021CFB520、2022CFB517、2022CFC054)

Research progress of biomaterials for enhancing rotator cuff tendon-to-bone healing

Huawei Wen, Ming Tang, Yushun Fang   

  • Received:2023-06-08 Published:2023-08-05
引用本文:

文华伟, 汤明, 方禹舜, 李亚楠, 张绍华, 张青松. 生物材料增强肩袖腱骨愈合的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(03): 273-278.

Huawei Wen, Ming Tang, Yushun Fang. Research progress of biomaterials for enhancing rotator cuff tendon-to-bone healing[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2023, 11(03): 273-278.

由于具有功能梯度的腱骨界面无法再生,肩袖修复术后具有较高的再撕裂发生率。幸运的是,生物材料的发展为促进肩袖腱骨愈合提供了广阔的前景。生物材料可以模仿天然腱骨界面的独特结构特征,为界面再生提供细胞外基质直至填补缺损,同时防止应力集中。因此,各种具有特殊结构和理化特征的生物材料被开发和评估以用于肩袖腱骨愈合。本文就近几年来自体组织移植、细胞外基质、无机支架和有机支架等生物材料在肩袖腱骨愈合中的最新研究进展进行了梳理,并对未来研究方向进行了展望。

表1 生物材料种类以及优劣特点
[1]
Doiron-Cadrin P, Lafrance S, Saulnier M, et al. Shoulder rotator cuff disorders: a systematic review of clinical practice guidelines and semantic analyses of recommendations[J]. Arch Phys Med Rehabil, 2020, 101(7): 1233-1242.
[2]
Guevara JA, Entezari V, Ho JC, et al. An update on surgical management of the repairable large-to-massive rotator cuff tear[J]. J Bone Joint Surg Am, 2020, 102(19): 1742-1754.
[3]
Boileau P. Arthroscopic Repair of Full-Thickness Tears of the Supraspinatus: Does the Tendon Really Heal?[J]. J Bone Joint Surg Am, 2005, 87(6): 1229-1240.
[4]
Miller BS, Downie BK, Kohen RB, et al. When do rotator cuff repairs fail? serial ultrasound examination after arthroscopic repair of large and massive rotator cuff tears[J]. Am J Sports Med, 2011, 39(10): 2064-2070.
[5]
Shih CA, Wu KC, Shao CJ, et al. Synovial fluid biomarkers: association with chronic rotator cuff tear severity and pain[J]. J Shoulder Elbow Surg, 2018, 27(3) : 545-552.
[6]
Wang D, Zhang X, Huang S, et al. Engineering multi-tissue units for regenerative medicine: bone-tendon-muscle units of the rotator cuff[J]. Biomaterials, 2021, 272: 120789.
[7]
滕强, 莫子艺, 郑小飞, 等. 关节镜下肱二头肌长头肌腱桥接补片联合背阔肌转位治疗不可修复性巨大肩袖撕裂的早期临床疗效[J/CD]. 中华肩肘外科电子杂志, 2021, 9(4): 341-347.
[8]
SungYup H, SeungJin L ,HeeBum H , et al. Onlay patch augmentation in rotator cuff repair for moderate to large tears in elderly patients: clinical and radiologic outcomes[J]. Clin Shoulder Elbow, 2023, 26(1): 71-81.
[9]
Hasegawa A, Mihata T, Itami Y, et al. Histological changes during healing with autologous fascia lata graft after superior capsule reconstruction in rabbit models[J]. J Shoulder Elbow Surg, 2021, 30(10): 2247-2259.
[10]
张青松, 方禹舜, 李涛, 等. 关节镜下自体阔筋膜补片桥接治疗巨大肩袖撕裂的疗效[J]. 中华创伤杂志, 2020, 36(12): 1071-1076.
[11]
向孝兵, 陈建发, 张双晓, 等. 关节镜下自体阔筋膜补片桥接术治疗不可修复性肩袖撕裂的早期疗效[J/CD]. 中华肩肘外科电子杂志, 2021, 9(3): 200-207.
[12]
汤明, 文华伟, 张绍华, 等. 阔筋膜补片桥接联合肱二头肌长头腱转位治疗不可修复性肩袖撕裂[J]. 中华骨科杂志, 2023, 43(4) : 238-246.
[13]
Mihara S, Fujita T, Ono T, et al. Rotator cuff repair using an original iliotibial ligament with a bone block patch: preliminary results with a 24-month follow-up period[J]. J Shoulder Elbow Surg, 2016, 25(7): 1155-1162.
[14]
Azevedo CI, Andrade R, Ângelo AC, et al. Fascia lata autograft versus human dermal allograft in arthroscopic superior capsular reconstruction for irreparable rotator cuff tears: a systematic review of clinical outcomes[J]. Arthroscopy, 2020, 36(2): 579-591.
[15]
Mori D, Funakoshi N, Yamashita F, et al. Effect of aatty degeneration of the infraspinatus on the efficacy of arthroscopic patch autograft procedure for aarge to massive rotator cuff tears[J]. Am J Sports Med, 2015, 43(5): 1108-1117.
[16]
Hong L, Jiang J, Yang W, et al. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body[J]. Int Orthop, 2012, 36(3): 665-669.
[17]
Holwein C, Bibra BV, Jungmann PM, et al. No healing improvement after rotator cuff reconstruction augmented with an autologous periosteal flap[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(10): 3212-3221.
[18]
Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97: 4-27.
[19]
Badylak SF, Freytes DO, Gilbert TW. Reprint of: Extracellular matrix as a biological scaffold material: Structure and function[J]. Acta Biomater, 2015, 23 Suppl: S17-26.
[20]
王文, 王敏, 秦胜男, 等. 巨大肩袖撕裂同种异体脱细胞真皮补片修补的早中期疗效[J/CD]. 中华肩肘外科电子杂志, 2021, 9(3): 208-211.
[21]
Hurley ET, Crook BS, Buldo-Licciardi M, et al. Acellular dermal matrix augmentation of arthroscopic rotator cuff repair reduces re-tear rates: a meta-analysis of randomized control trials[J]. Arthroscopy, 2023, S0749-8063(23)00801-0.
[22]
Zhu M, Li W, Dong X, et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration[J]. Nat Commun, 2019, 10(1): 4620.
[23]
Turner NJ, Yates AJ, Weber DJ, et al. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction[J]. Tissue Eng Part A, 2010, 16(11): 3309-3317.
[24]
Thon SG, O'Malley L, O'Brien MJ, et al. Evaluation of healing rates and safety with a bioinductive collagen patch for large and massive rotator cuff tears: 2-year safety and clinical outcomes[J]. Am J Sports Med, 2019, 47(8): 1901-1908.
[25]
Neumann JA, Zgonis MH, Rickert KD, et al. Interposition dermal matrix xenografts: a successful alternative to traditional treatment of massive rotator cuff tears[J]. Am J Sports Med, 2017, 45(6): 1261.
[26]
Hartzler RU, Softic D, Qin X, et al. The histology of a healed superior capsular reconstruction dermal allograft: a case report [J]. Arthroscopy, 2019, 35(10):2950-2958.
[27]
Denard PJ, Brady PC, Adams CR, et al. Preliminary results of arthroscopic superior capsule reconstruction with dermal allograft[J]. Arthroscopy, 2018,34(1):93-99.
[28]
Awad MA, Sparavalo S, Ma J, et al. Interposition graft bridging reconstruction of irreparable rotator cuff tears using acellular dermal matrix: medium-term results[J]. Arthroscopy, 2022,38(3): 692-698.
[29]
Chaudhury S, Holland C, Thompson MS, et al. Tensile and shear mechanical properties of rotator cuff repair patches[J]. J Shoulder Elbow Surg, 2012, 21(9): 1168-1176.
[30]
Raghavan SS, Woon CY, Kraus A, et al. Human flexor tendon tissue engineering: decellularization of human flexor tendons reduces immunogenicity in vivo[J]. Tissue Eng Part A, 2012, 18(7-8): 796-805.
[31]
Yang JL, Yao X, Qing Q, et al. An engineered tendon/ligament bioscaffold derived from decellularized and demineralized cortical bone matrix[J]. J Biomed Mater Res A, 2018, 106(2): 468-478.
[32]
Costa A, Naranjo JD, Londono R, et al. Biologic scaffolds [J]. Cold Spring Harb Perspect Med, 2017, 7(9): a025676.
[33]
Costa A, Naranjo JD, Turner NJ, et al. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect[J]. Biomaterials, 2016, 108: 81-90.
[34]
Agrawal V, Tottey S, Johnson SA, et al. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation[J]. Tissue Eng Part A, 2011, 17(19-20): 2435-2443.
[35]
Sicari BM, Rubin JP, Dearth CL, et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss[J]. Sci Transl Med, 2014, 6(234): 234-258.
[36]
Ide J, Tokunaga T. Rotator cuff tendon-to-bone healing at 12 months after patch grafting of acellular dermal matrix in an animal model[J]. J Orthop Sci, 2018, 23(2): 207-212.
[37]
Badylak SF, Tullius R, Kokini K, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model[J]. J Biomed Mater Res, 1995, 29(8): 977-985.
[38]
Su M, Zhang Q, Zhu Y, et al. Preparation of decellularized triphasic hierarchical bone‐fibrocartilage‐tendon composite extracellular matrix for enthesis regeneration[J]. Adv Healthc Mater, 2019, 8(19): e1900831.
[39]
Zhang X, Teng Y, Li R, et al. Proximal, distal, and combined fixation within the tibial tunnel in transtibial posterior cruciate ligament reconstruction: a time-zero biomechanical study in vitro[J]. Arthroscopy, 2019, 35(6): 1667-1673.
[40]
Yeazell S, Lutz A, Bohon H, et al. Increased stiffness and reoperation rate in partial rotator cuff repairs treated with a bovine patch: a propensity-matched trial[J]. J Shoulder Elbow Surg, 2022, 31(6S): S131-S135.
[41]
Chen C, Shi Q, Li M, et al. Engineering an enthesis-like graft for rotator cuff repair:An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers[J]. Bioact Mater, 2022, 16: 451-471.
[42]
Hench LL. The future of bioactive ceramics [J]. J Mate Sci Mate Med, 2015, 26(2): 86.
[43]
Zhao S, Peng L, Xie G, et al. Effect of the interposition of calcium phosphate materials on tendon-bone healing during repair of chronic rotator cuff tear[J]. Am J Sports Med, 2014, 42(8): 1920-1929.
[44]
Kovacevic D, Fox AJ, Bedi A, et al. Calcium-Phosphate Matrix With or Without TGF-β3 Improves Tendon-Bone Healing After Rotator Cuff Repair[J]. Am J Sports Med, 2011, 39(4): 811-819.
[45]
Liao H, Yu HP, Song W, et al. Amorphous calcium phosphate nanoparticles using adenosine triphosphate as an organic phosphorus source for promoting tendon–bone healing[J]. J Nanobiotechnology, 2021, 19(1): 270.
[46]
Zoratto N, Lisa DD, Rutte J, et al. In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering[J]. Bioeng Transl Med, 2020, 5(3): e10180.
[47]
Caliari SR, Harley BA. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals[J]. Tissue Eng Part A, 2014, 20(17-18): 2463-2472.
[48]
Zheng Z, Ran J, Chen W, et al. Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair[J]. Acta Biomaterialia, 2017, 51: 317-329.
[49]
Moshaverinia A, Xu X, Chen C, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration[J]. Biomaterials, 2014, 35(9): 2642-2650.
[50]
Root KT, Wright JO, Mandato N, et al. Subacromial-subdeltoid bursitis with rice bodies after rotator cuff repair with a collagen scaffold implant: a case report[J]. JBJS Case Connect, 2023, 13(1).
[51]
Thangarajah T, Ling FK, Lo IK. Isolated bioinductive arthroscopic repair of partial-thickness rotator cuff tears using a resorbable collagen implant[J]. JBJS Essent Surg Tech,2022, 12(1): e21.00008.
[52]
Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review[J]. Prog Polym Sci, 2011, 36(9): 1254-1276.
[53]
Francois E, Dorcemus D, Nukavarapu S. Biomaterials and scaffolds for musculoskeletal tissue engineering[J]. Regene Engineer Musculoskel Tis Interf, 2015, 3-23.
[54]
Marsh D, Haddad B, Khan WS, et al. Biomaterials and scaffolds in bone and musculoskeletal engineering[J]. Curr Stem Cell Res Ther, 2013, 8(3): 185-191.
[55]
Zur G, Linder-Ganz E, Elsner JJ, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model[J]. Knee Surg Sports Traumatol Arthrosc, 2011, 19(2): 255-263.
[56]
Żywicka B, Krucińska I, Garcarek J, et al. Biological properties of low-toxic PLGA and PLGA/PHB fibrous nanocomposite scaffolds for osseous tissue regeneration. evaluation of potential bioactivity[J]. Molecules, 2017, 22(11): 1852.
[57]
Gillespie RJ, Knapik DM, Akkus O. Biologic and Synthetic Grafts in the Reconstruction of Large to Massive Rotator Cuff Tears[J]. J Am Acad Orthop Surg, 2016, 24(12): 823-828.
[58]
Yokoya S, Mochizuki Y, Nagata Y, et al. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model [J]. Am J Sports Med, 2008, 36(7): 1298.
[59]
Kim W, Kim GE, Attia M, et al. Tendon-Inspired Nanotopographic Scaffold for Tissue Regeneration in Rotator Cuff Injuries[J]. ACS Omega, 2020, 5(23): 13913-13925.
[60]
Shen Y, Tu T, Yi B, et al. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response[J]. Acta Biomater, 2019, 97: 200-215.
[61]
Yigit S, Dinjaski N, Kaplan DL. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications[J]. Biotechnol Bioeng, 2016, 113(5): 913-929.
[62]
Patel S, Caldwell JM, Doty SB, et al. Integrating soft and hard tissues via interface tissue engineering[J]. J Orthop Res, 2018, 36(4): 1069-1077.
[1] 张俊慧, 徐莉, 吕青, 谭秋雯. 肿瘤细胞外基质对乳腺癌侵袭转移的调控[J]. 中华乳腺病杂志(电子版), 2022, 16(04): 236-239.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 初磊, 郭翼, 童晓文. Periostin在妇科恶性肿瘤中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 145-149.
[4] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[5] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[6] 张之迅, 李海航, 朱世辉. 皮肤创面无瘢痕愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(04): 322-325.
[7] 李全, 巴特. 整合素在烧伤创面愈合中的作用研究进展[J]. 中华损伤与修复杂志(电子版), 2018, 13(02): 130-133.
[8] 金华, 叶静, 王平, 黄永刚. 自体组织瓣在腹壁缺损修复和重建中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(04): 378-384.
[9] 公绪合. 自体疗法对组织愈合和再生的促进作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 125-128.
[10] 邱佳辉, 韩超, 黄陈. 胶原蛋白在结直肠癌中的研究现状与进展[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 281-287.
[11] 邢凯, 吴宁玲, 亢泽峰, 刘健, 朱明娟. 高度近视眼巩膜细胞外基质中相关胶原分子机制的研究进展[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 44-48.
[12] 吴鸿斌, 杨华, 汪健, 孙红. 间充质干细胞及其来源的外泌体在骨关节炎治疗中的研究进展[J]. 中华老年骨科与康复电子杂志, 2019, 05(02): 114-117.
[13] 陈红星, 黄楷, 刘兴州, 刘静, 吴晓莹, 王家欢, 杨川, 严励, 任萌. 高糖抑制平滑肌细胞胶原合成参与糖尿病静脉病变发生[J]. 中华介入放射学电子杂志, 2020, 08(01): 62-69.
[14] 吕斌, 胡良聪, 谢旭东, 程鹏, 米博斌, 刘国辉. 褪黑素调控椎间盘退变的研究进展[J]. 中华老年病研究电子杂志, 2022, 09(04): 58-64.
[15] 刘扬, 张锐毅, 张艳, 李红敏, 苏秋羊, 薛孟周. 细胞外基质金属蛋白酶诱导因子在脑卒中中的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 57-60.
阅读次数
全文


摘要