[1] |
Fruedebstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation, 1968, 68(2): 230-247.
|
[2] |
Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5): 641-650.
|
[3] |
De Bari C, Dell'accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rheum, 2001, 44(8): 1928-1942.
|
[4] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
|
[5] |
Li F, Tang Y, Song B, et al. Nomenclature clarification: synovial fibroblasts and synovial mesenchymal stem cells[J]. Stem Cell Res Ther, 2019, 10(1): 260.
|
[6] |
Smith MD. The normal synovium[J]. Open Rheumatol J, 2011, 5: 100-106.
|
[7] |
Nakagawa S, Toritsuka Y, Wakitani S, et al. Bone marrow stromal cells contribute to synovial cell proliferation in rats with collagen induced arthritis[J]. J Rheumatol, 1996, 23(12): 2098-2103.
|
[8] |
Da Silva Meirelles L, Sand TT, Harman RJ, et al. MSC frequency correlates with blood vessel density in equine adipose tissue[J]. Tissue Eng Part A, 2009, 15(2): 221-229.
|
[9] |
Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals[J]. Arthritis Res, 2000, 2(6): 477-488.
|
[10] |
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes[J]. Nat Rev Rheumatol, 2020, 16(6): 316-333.
|
[11] |
Vandenabeele F, De Bari C, Moreels M, et al. Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane[J]. Arch Histol Cytol, 2003, 66(2): 145-153.
|
[12] |
De Sousa EB, Casado PL, Moura Neto V, et al. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives[J]. Stem Cell Res Ther, 2014, 5(5): 112.
|
[13] |
Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010, 466(7308): 829-834.
|
[14] |
Yianni V, Sharpe PT. Perivascular-Derived Mesenchymal Stem Cells[J]. J Dent Res, 2019, 98(10): 1066-1072.
|
[15] |
Roelofs AJ, Zupan J, Riemen AHK, et al. Joint morphogenetic cells in the adult mammalian synovium[J]. Nat Commun, 2017, 8: 15040.
|
[16] |
Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans[J]. Arthritis Rheum, 2006, 54(3): 843-853.
|
[17] |
Utsunomiya H, Uchida S, Sekiya I, et al. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears[J]. Am J Sports Med, 2013, 41(3): 657-668.
|
[18] |
Ducret M, Fabre H, Degoul O, et al. Immunophenotyping reveals the diversity of human dental pulp mesenchymal stromal cells in vivo and their evolution upon in vitro amplification[J]. Front Physiol, 2016, 7: 512.
|
[19] |
Morikawa D, Johnson JD, Kia C, et al. Examining the potency of subacromial bursal cells as a potential augmentation for rotator cuff healing: an in vitro study[J]. Arthroscopy, 2019, 35(11): 2978-2988.
|
[20] |
Lian WS, Wu RW, Lee MS, et al. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4[J]. J Mol Med (Berl), 2017, 95(12): 1327-1340.
|
[21] |
Mabuchi Y, Morikawa S, Harada S, et al. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells[J]. Stem Cell Reports, 2013,1(2): 152-165.
|
[22] |
Sivasubramaniyan K, Koevoet W, Hakimiyan AA, et al. Cell-surface markers identify tissue resident multipotential stem/stromal cell subsets in synovial intimal and sub-intimal compartments with distinct chondrogenic properties[J]. Osteoarthritis Cartilage, 2019, 27(12): 1831-1840.
|
[23] |
Muench LN, Baldino JB, Berthold DP, et al. Subacromial bursa-derived cells demonstrate high proliferation potential regardless of patient demographics and rotator cuff tear characteristics[J]. Arthroscopy, 2020, 36(11): 2794-2802.
|
[24] |
Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source[J]. Arthritis Rheum, 2005, 52(8): 2521-2529.
|
[25] |
Mizuno M, Katano H, Mabuchi Y, et al. Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions[J]. Stem Cell Res Ther, 2018, 9(1): 123.
|
[26] |
Bami M, Sarlikiotis T, Milonaki M, et al. Superiority of synovial membrane mesenchymal stem cells in chondrogenesis, osteogenesis, myogenesis and tenogenesis in a rabbit model[J]. Injury, 2020, 51(12): 2855-2865.
|
[27] |
Kondo S, Muneta T, Nakagawa Y, et al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates[J]. J Orthop Res, 2017, 35(6): 1274-1282.
|
[28] |
De Bari C, Dell'accio F, Vandenabeele F, et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane[J]. J Cell Biol, 2003, 160(6): 909-918.
|
[29] |
Zhang S, Chuah SJ, Lai RC, et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity[J]. Biomaterials, 2018, 156: 16-27.
|
[30] |
Kim YG, Choi J, Kim K. Mesenchymal Stem Cell-Derived Exosomes for Effective Cartilage Tissue Repair and Treatment of Osteoarthritis[J]. Biotechnol J, 2020, 15(12): e2000082.
|
[31] |
Luque-Campos N, Contreras-Lopez RA, Jose Paredes-Martinez M, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory t cell response[J]. Front Immunol, 2019, 10: 798.
|
[32] |
Hagmann S, Rimmele C, Bucur F, et al. Mesenchymal stromal cells from osteoarthritic synovium are a distinct population compared to their bone-marrow counterparts regarding surface marker distribution and immunomodulation of allogeneic cd4+ t-cell cultures[J]. Stem Cells Int, 2016, 2016: 6579463.
|
[33] |
Yan M, Liu X, Dang Q, et al. Intra-articular injection of human synovial membrane-derived mesenchymal stem cells in murine collagen-induced arthritis: assessment of immunomodulatory capacity in vivo[J]. Stem Cells Int, 2017, 2017: 9198328.
|
[34] |
Gazdic M, Volarevic V, Arsenijevic N, et al. Mesenchymal stem cells: a friend or foe in immune-mediated diseases[J]. Stem Cell Rev Rep, 2015, 11(2): 280-287.
|
[35] |
Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for rheumatoid arthritis treatment: an update on clinical applications[J]. Cells, 2020, 9(8):1852-1872.
|
[36] |
Xu Y, Zhang WX, Wang LN, et al. Stem cell therapies in tendon-bone healing[J]. World J Stem Cells, 2021, 13(7): 753-775.
|
[37] |
Ozeki N, Muneta T, Matsuta S, et al. Synovial mesenchymal stem cells promote meniscus regeneration augmented by an autologous Achilles tendon graft in a rat partial meniscus defect model[J]. Stem Cells, 2015, 33(6): 1927-1938.
|
[38] |
Nakagawa Y, Muneta T, Kondo S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs[J]. Osteoarthritis Cartilage, 2015, 23(6): 1007-1017.
|
[39] |
Camernik K, Barlic A, Drobnic M, et al. Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration?[J]. Stem Cell Rev Rep, 2018, 14(3): 346-369.
|
[40] |
Cho WS, Chung SG, Kim W, et al. Mesenchymal stem cells use in the treatment of tendon disorders: a systematic review and meta-analysis of prospective clinical studies[J]. Ann Rehabil Med, 2021, 45(4): 274-283.
|
[41] |
Tsekes D, Konstantopoulos G, Khan WS, et al. Use of stem cells and growth factors in rotator cuff tendon repair[J]. Eur J Orthop Surg Traumatol, 2019, 29(4): 747-757.
|
[42] |
Rothrauff BB, Smith CA, Ferrer GA, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats[J]. J Shoulder Elbow Surg, 2019, 28(4): 654-664.
|
[43] |
Kaizawa Y, Franklin A, Leyden J, et al. Augmentation of chronic rotator cuff healing using adipose-derived stem cell-seeded human tendon-derived hydrogel[J]. J Orthop Res, 2019, 37(4): 877-886.
|
[44] |
Jo CH, Chai JW, Jeong EC, et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial[J]. Stem Cells, 2018, 36(9): 1441-1450.
|
[45] |
Voss A, Mccarthy MB, Bellas N, et al. Significant improvement in shoulder function and pain in patients following biologic augmentation of revision arthroscopic rotator cuff repair using an autologous fibrin scaffold and bone marrow aspirate derived from the proximal humerus[J]. Arthrosc Sports Med Rehabil, 2021, 3(6): e1819-e1825.
|
[46] |
Morikawa D, Muench LN, Baldino JB, et al. Comparison of preparation techniques for isolating subacromial bursa-derived cells as a potential augment for rotator cuff repair[J]. Arthroscopy, 2020, 36(1): 80-85.
|
[47] |
Muench LN, Kia C, Berthold DP, et al. Preliminary clinical outcomes following biologic augmentation of arthroscopic rotator cuff repair using subacromial bursa, concentrated bone marrow aspirate, and platelet-rich plasma[J]. Arthrosc Sports Med Rehabil, 2020, 2(6): e803-e813.
|
[48] |
Dei Giudici L, Castricini R. Local autologous stem cells application in rotator cuff repairs: "lasca" technique[J]. Arthrosc Tech, 2020, 9(10): e1571-e1575.
|