[1] |
Wu L, Jiang Y, Cao X, et al. Efficacies and complications of internal fixations with philos plate and intramedullary multiloc® nails in the surgical treatment of proximal humerus fractures [J]. Am J Transl Res, 2021, 13(10): 11786-11796.
|
[2] |
Garcia-Reza A, Dominguez-Prado DM, Iglesias-Nunez C, et al. Analysis of predictors of mortality after surgical and non-surgical management in proximal humerus fractures [J]. J Orthop Traumatol, 2021, 22(1): 43.
|
[3] |
Avilucea FR, Shaath K, Kozlowski R, et al. Modified use of a fibular strut in the reduction and stabilization of 2-part osteoporotic proximal humerus fractures [J]. J Am Acad Orthop Surg Glob Res Rev, 2020, 4(10): e20 00153.
|
[4] |
Lander ST, Mahmood B, Maceroli MA, et al. Mortality rates of humerus fractures in the elderly: Does surgical treatment matter? [J]. J Orthop Trauma, 2019, 33(7): 361-365.
|
[5] |
De Jongh RT, Van Schoor NM, Lips P. Changes in vitamin d endocrinology during aging in adults [J]. Mol Cell Endocrinol, 2017, 453: 144-150.
|
[6] |
Iglesias-Rodriguez S, Dominguez-Prado DM, Garcia-Reza A, et al. Epidemiology of proximal humerus fractures [J]. J Orthop Surg Res, 2021, 16(1): 402.
|
[7] |
Suroto H, De Vega B, Deapsari F, et al. Reverse total shoulder arthroplasty (RTSA) versus open reduction and internal fixation (ORIF) for displaced three-part or four-part proximal humeral fractures: A systematic review and meta-analysis [J]. EFORT Open Rev, 2021, 6(10): 941-955.
|
[8] |
Frima H, Houwert RM, Beks RB, et al. proximal humerus fractures; conservative or surgical treatment?[J]. Ned Tijdschr Geneeskd, 2019, 163:D3096.
|
[9] |
Biermann N, Prall WC, Bocker W, et al. Augmentation of plate osteosynthesis for proximal humeral fractures: a systematic review of current biomechanical and clinical studies [J]. Arch Orthop Trauma Surg, 2019, 139(8): 1075-1099.
|
[10] |
Erpala F, Tahta M, Ozturk T, et al. Comparison of treatment options of three- and four-part humerus proximal fractures in patients over 50 years of age [J]. Cureus, 2021, 13(8): e17516.
|
[11] |
Helfen T, Siebenburger G, Mayer M, et al. Operative treatment of 2-part surgical neck fractures of the proximal humerus (AO11-A3) in the elderly: Cement augmented locking plate philos vs. Proximal humerus nail multiloc® [J]. BMC Musculoskelet Disord, 2016, 17(1): 448.
|
[12] |
Helfen T, Siebenburger G, Fleischhacker E, et al. Operative treatment of 2-part surgical neck type fractures of the proximal humerus in the elderly: Cement augmented locking plate philos vs. Proximal humerus nail multiloc®[J]. Injury, 2020, 51(10): 2245-2252.
|
[13] |
Gumina S, Candela V, Giannicola G, et al. Complex humeral head fractures treated with blocked threaded wires: Maintenance of the reduction and clinical results with two different fixation constructs [J]. J Shoulder Elbow Surg, 2019, 28(1): 36-41.
|
[14] |
Gumina S, Candela V, Cacciarelli A, et al. Three-part humeral head fractures treated with a definite construct of blocked threaded wires: Finite element and parametric optimization analysis [J]. JSES Int, 2021, 5(6): 983-991.
|
[15] |
Muller F, Doblinger M, Eckstein C, et al. The philos plate-also an indication for osteosynthesis of the distal tibia?[J]. Unfallchirurg, 2020, 123(4): 326-329.
|
[16] |
Foruria AM, Martinez-Catalan N, Valencia M, et al. Proximal humeral fracture locking plate fixation with anatomic reduction, and a short-and-cemented-screws configuration, dramatically reduces the implant related failure rate in elderly patients [J]. JSES Int, 2021, 5(6): 992-1000.
|
[17] |
Jabran A, Peach C, Zou Z, et al. Biomechanical comparison of screw-based zones of a spatial subchondral support plate for proximal humerus fractures [J]. Proc Inst Mech Eng H, 2019, 233(3): 372-382.
|
[18] |
Fletcher JWA, Windolf M, Richards RG, et al. Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations [J]. J Orthop Res, 2019, 37(4): 957-964.
|
[19] |
Mehta S, Chin M, Sanville J, et al. Calcar screw position in proximal humerus fracture fixation: Don't miss high! [J]. Injury, 2018, 49(3): 624-629.
|
[20] |
Fletcher JWA, Windolf M, Richards RG, et al. Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models [J]. J Shoulder Elbow Surg, 2019, 28(9): 1816-1823.
|
[21] |
Mcmillan TE, Johnstone AJ. Primary screw perforation or subsequent screw cut-out following proximal humerus fracture fixation using locking plates: A review of causative factors and proposed solutions [J]. Int Orthop, 2018, 42(8): 1935-1942.
|
[22] |
Fletcher JWA, Windolf M, Grunwald L, et al. The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations [J]. Arch Orthop Trauma Surg, 2019, 139(8): 1069-1074.
|
[23] |
Varga P, Inzana JA, Fletcher JWA, et al. Cement augmentation of calcar screws may provide the greatest reduction in predicted screw cut-out risk for proximal humerus plating based on validated parametric computational modelling: Augmenting proximal humerus fracture plating [J]. Bone Joint Res, 2020, 9(9): 534-542.
|
[24] |
Ciric D, Mischler D, Qawasmi F, et al. Secondary perforation risk in plate osteosynthesis of unstable proximal humerus fractures: A biomechanical investigation of the effect of screw length [J]. J Orthop Res, 2019, 37(12): 2625-2633.
|
[25] |
Schliemann B, Risse N, Frank A, et al. Screws with larger core diameter and lower thread pitch increase the stability of locked plating in osteoporotic proximal humeral fractures [J]. Clin Biomech (Bristol Avon), 2019, 63: 21-26.
|
[26] |
Sandmann G, Ateschrang A, Freude T, et al. Dynamic locking screws in proximal humeral plate osteosynthesis demonstrate superior fixation properties: a biomechanical study [J]. J Exp Orthop, 2020, 7(1): 82.
|
[27] |
Jabran A, Peach C, Ren L. Biomechanical analysis of plate systems for proximal humerus fractures: A systematic literature review [J]. Biomed Eng Online, 2018, 17(1): 47.
|
[28] |
Hengg C, Nijs S, Klopfer T, et al. Cement augmentation of the proximal humerus internal locking system in elderly patients: A multicenter randomized controlled trial [J]. Arch Orthop Trauma Surg, 2019, 139(7): 927-942.
|
[29] |
Katthagen JC, Lutz O, Voigt C, et al. Cement augmentation of humeral head screws reduces early implant-related complications after locked plating of proximal humeral fractures [J]. Obere Extrem, 2018, 13(2): 123-129.
|
[30] |
Knierzinger D, Crepaz-Eger U, Hengg C, et al. Does cement augmentation of the screws in angular stable plating for proximal humerus fractures influence the radiological outcome: A retrospective assessment [J]. Arch Orthop Trauma Surg, 2020, 140(10): 1413-1421.
|
[31] |
常祖豪,张伟,唐佩福, 等. 内侧支撑重建增强固定技术在肱骨近端骨折治疗中的研究进展[J]. 中国修复重建外科杂志, 2021, 35(3): 375-380.
|
[32] |
Fleischhacker E, Siebenburger G, Helfen T, et al. Varus malposition relates to functional outcomes following open reduction and internal fixation for proximal humeral fractures: A retrospective comparative cohort study with minimum 2 years follow-up [J]. Injury, 2021, 52(3): 506-510.
|
[33] |
Laux CJ, Grubhofer F, Werner CML, et al. Current concepts in locking plate fixation of proximal humerus fractures [J]. J Orthop Surg Res, 2017, 12(1): 137.
|
[34] |
Padegimas EM, Chang G, Namjouyan K, et al. Failure to restore the calcar and locking screw cross-threading predicts varus collapse in proximal humerus fracture fixation [J]. J Shoulder Elbow Surg, 2020, 29(2): 291-295.
|
[35] |
Liskutin T, Harkin E, Summers H, et al. The influence of biplanar reduction and surgeon experience on proximal humerus fractures treated with orif [J]. Injury, 2020, 51(2): 322-328.
|
[36] |
Shin WC, Kang SW, Son SM, et al. High bone union rate using a locking plate for proximal humeral fractures in patients older than 70 years: Importance of the medial column [J]. Eur J Trauma Emerg Surg, 2022, 48(4):2937-2942.
|
[37] |
Theopold J, Schleifenbaum S, Muller M, et al. Biomechanical evaluation of hybrid double plate osteosynthesis using a locking plate and an inverted third tubular plate for the treatment of proximal humeral fractures [J]. PLoS One, 2018, 13(10): e0206349.
|
[38] |
Warnhoff M, Jensen G, Dey Hazra RO, et al. Double plating - surgical technique and good clinical results in complex and highly unstable proximal humeral fractures [J]. Injury, 2021, 52(8): 2285-2291.
|
[39] |
Zhang Y, Wan L, Zhang L, et al. Reduction and fixation of proximal humeral fracture with severe medial instability using a small locking plate [J]. BMC Surg, 2021, 21(1): 387.
|
[40] |
Gardenbroek TJ, Oud S, Formijne Jonkers HA, et al. Supporting the medial hinge in proximal humerus fractures with an intramedullary plate [J]. Trauma Case Rep, 2021, 33: 100474.
|
[41] |
Zhao L, Qi YM, Yang L, et al. Comparison of the effects of proximal humeral internal locking system (philos) alone and philos combined with fibular allograft in the treatment of neer three- or four-part proximal humerus fractures in the elderly [J]. Orthop Surg, 2019, 11(6): 1003-1012.
|
[42] |
Davids S, Allen D, Desarno M, et al. Comparison of locked plating of varus displaced proximal humeral fractures with and without fibula allograft augmentation [J]. J Orthop Trauma, 2020, 34(4): 186-192.
|
[43] |
Bae JH, Oh JK, Chon CS, et al. The biomechanical performance of locking plate fixation with intramedullary fibular strut graft augmentation in the treatment of unstable fractures of the proximal humerus [J]. J Bone Joint Surg Br, 2011, 93(7): 937-941.
|
[44] |
Cheng H, Yu J, Dong Z, et al. Treatment of 2-part proximal humeral fractures in osteoporotic patients with medial calcar instability using a philos plate plus an allogeneic fibula inserted obliquely - a retrospective study [J]. Geriatr Orthop Surg Rehabil, 2021, 12: 21514593211050155.
|
[45] |
Shu Y, Chen M, Yu W, et al. Philos plate plus oblique insertion of autologous fibula for 2-part proximal humerus fractures with medial column disruption: A retrospective study [J]. Geriatr Orthop Surg Rehabil, 2021, 12: 2151459321992666.
|
[46] |
Mathison C, Chaudhary R, Beaupre L, et al. Biomechanical analysis of proximal humeral fixation using locking plate fixation with an intramedullary fibular allograft [J]. Clin Biomech (Bristol, Avon), 2010, 25(7): 642-646.
|
[47] |
Gardner MJ, Boraiah S, Helfet DL, et al. Indirect medial reduction and strut support of proximal humerus fractures using an endosteal implant [J]. J Orthop Trauma, 2008, 22(3): 195-200.
|
[48] |
Little MT, Berkes MB, Schottel PC, et al. The impact of preoperative coronal plane deformity on proximal humerus fixation with endosteal augmentation [J]. J Orthop Trauma, 2014, 28(6): 338-347.
|
[49] |
Jia Z, Li C, Lin J, et al. Clinical effect of using multiloc® nails to treat four-part proximal humeral fractures [J]. J Int Med Res, 2020, 48(12): 300060520979212.
|
[50] |
Li M, Wang Y, Zhang Y, et al. Intramedullary nail versus locking plate for treatment of proximal humeral fractures: a meta-analysis based on 1384 individuals [J]. J Int Med Res, 2018, 46(11): 4363-4376.
|
[51] |
Mocini F, Cazzato G, Masci G, et al. Clinical and radiographic outcomes after antegrade intramedullary nail fixation of humeral fractures [J]. Injury, 2020, 51(3): S34-S38.
|
[52] |
Boyer P, Couffignal C, Bahman M, et al. Displaced three and four part proximal humeral fractures: Prospective controlled randomized open-label two-arm study comparing intramedullary nailing and locking plate [J]. Int Orthop, 2021, 45(11): 2917-2926.
|
[53] |
Bu G, Sun W, Li J, et al. Mutiloc nail versus philos plate in treating proximal humeral fractures: a retrospective study among the alderly [J]. Geriatr Orthop Surg Rehabil, 2021, 12: 21514593211043961.
|
[54] |
Mocini F, Rovere G, De Mauro D, et al. Newer generation straight humeral nails allow faster bone healing and better functional outcome at mid-term [J]. J Orthop Surg Res, 2021, 16(1): 631.
|
[55] |
Beks RB, Ochen Y, Frima H, et al. Operative versus nonoperative treatment of proximal humeral fractures: A systematic review, meta-analysis, and comparison of observational studies and randomized controlled trials [J]. J Shoulder Elbow Surg, 2018, 27(8): 1526-1534.
|
[56] |
Du S, Ye J, Chen H, et al. Interventions for treating 3- or 4-part proximal humeral fractures in elderly patient: A network meta-analysis of randomized controlled trials [J]. Int J Surg, 2017, 48: 240-246.
|
[57] |
Fraser AN, Bjordal J, Wagle TM, et al. Reverse shoulder arthroplasty is superior to plate fixation at 2 years for displaced proximal humeral fractures in the elderly: A multicenter randomized controlled trial [J]. J Bone Joint Surg Am, 2020, 102(6): 477-485.
|
[58] |
Barger J, Stenquist DS, Mohamadi A, et al. Acute versus delayed reverse total shoulder arthroplasty for the management of proximal humerus fractures [J]. Injury, 2021, 52(8): 2272-2278.
|
[59] |
Seidel HD, Bhattacharjee S, Koh JL, et al. Acute versus delayed reverse shoulder arthroplasty for the primary treatment of proximal humeral fractures [J]. J Am Acad Orthop Surg, 2021, 29(19): 832-839.
|
[60] |
Panagopoulos GN, Pugliese M, Leonidou A, et al. Acute versus delayed reverse total shoulder arthroplasty for proximal humeral fractures: a consecutive cohort study [J]. J Shoulder Elbow Surg, 2021, 31(2):276-285.
|
[61] |
Ernstbrunner L, Rahm S, Suter A, et al. Salvage reverse total shoulder arthroplasty for failed operative treatment of proximal humeral fractures in patients younger than 60 years: Long-term results [J]. J Shoulder Elbow Surg, 2020, 29(3): 561-570.
|
[62] |
Jo O, Borbas P, Grubhofer F, et al. Prosthesis designs and tuberosity fixation techniques in reverse total shoulder arthroplasty: Influence on tuberosity healing in proximal humerus fractures [J]. J Clin Med, 2021, 10(18): 4146.
|
[63] |
Ostergaard PJ, Hall MJ, Shoji M, et al. Minimum 2-year outcomes of reverse total shoulder arthroplasty for fracture: How does acute arthroplasty compare with salvage? [J]. J Shoulder Elbow Surg, 2021, 31(2):252-260.
|
[64] |
Cristofolini L, Ruspi ML, Marras D, et al. Reconstruction of proximal humeral fractures without screws using a reinforced bone substitute [J]. J Biomech, 2021, 115: 110138.
|