切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2021, Vol. 09 ›› Issue (01) : 78 -87. doi: 10.3877/cma.j.issn.2095-5790.2021.01.012

所属专题: 文献

综述

肩袖损伤修复的生物治疗现状及进展
张宝祥1, 张强2,()   
  1. 1. 100853 北京,解放军医学院;100853 北京,中国人民解放军总医院第四医学中心骨科医学部
    2. 100853 北京,中国人民解放军总医院第四医学中心骨科医学部
  • 收稿日期:2020-07-21 出版日期:2021-02-05
  • 通信作者: 张强
  • 基金资助:
    北京市科技创新与领军人才培养(Z161100004916137)

Current status and progress of biological therapy for rotator cuff injury repair

Baoxiang Zhang1, Qiang Zhang2()   

  • Received:2020-07-21 Published:2021-02-05
  • Corresponding author: Qiang Zhang
引用本文:

张宝祥, 张强. 肩袖损伤修复的生物治疗现状及进展[J]. 中华肩肘外科电子杂志, 2021, 09(01): 78-87.

Baoxiang Zhang, Qiang Zhang. Current status and progress of biological therapy for rotator cuff injury repair[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2021, 09(01): 78-87.

表1 PRP在肩袖损伤修复中的应用研究
作者 方法 研究目的 结果
Jo等[10] 随机对照研究;接受或不接受PRP增强修复(n=74) 评估PRP促进修复作用 与未加用PRP的修复相比,目前的PRP的制备和应用方法显著提高了肩袖修复的质量,表现为再撕裂率降低,冈上肌的肌腱容积增加,但愈合速度无明显改善。
Dukan等[11] 随机对照研究;69例患者使用(n=32)或不使用(n=37)PRP增强修复 评估PRP促进修复作用 在本初步研究中,自体PRP凝胶治疗组有较好的临床和放射学效果。但最后一次随访时并不显著。只有3个月的临床结果有显著提高。
Snow等[12] 随机对照研究;97例患者随机分成两组,分别在术后10~14 d内接受超声引导下注射富含白细胞的PRP或生理盐水 探讨延迟应用PRP对肩袖修复效果的影响 术后1年,治疗组之间在患者报告的任何结果指标或恒定评分上都没有显著差异。术后再撕裂率对照组为21%,PRP组为15.3%,差异无统计学意义(P>0.05)。术后影像上,生理盐水组的脂肪浸润明显高于PRP组(P=0.032)。
Cross等[13] 肌腱植入体在L(lo)PRP、L(hi)PRP或对照培养基中培养 评估PRP在肩袖损伤中作用 中度退变肌腱,贫白细胞PRP比富白细胞PRP更能促进正常胶原基质的合成,降低与基质降解和炎症相关的细胞因子浓度;但中度退变肌腱均未促进基质合成
Martinelli等[14] 前瞻性研究;22例接受关节镜下肩袖修复术的患者两组:术中PRP组11例(A组),未行PRP组11例(B组) 评估PRP在肩袖损伤中作用 VAS、ROM、UCLA评分、恒定评分等临床功能参数未发现统计学差异。
Bergeson等[15] 对照研究加或不加PRFM(n=38) 评估PRP在肩袖损伤中作用 没有明显改善
Castricini等[16] 对照研究加或不加PRFM(n=88) 评估PRFM在肩袖损伤中作用 恒定评分和MRI评估没有显著差异
Zumstein等[17] 对照研究加或不加L-PRF 评估L-PRF在肩袖损伤中作用 临床结果、愈合率、肌腱质量没有显著差异
Cavallo等[23] 10%的氯化钙(CaCl2)、自体凝血酶、CaCl2+凝血酶和Ⅰ型胶原蛋白激活10名健康男性的PRP,评估细胞因子的释放 不同激活方式对PRP生物活性分子释放的影响 用氯化钙(CaCl2)、凝血酶和CaCl2+凝血酶激活的PRP在15 min的评估中检测到形成了凝块,而在I型胶原激活的样本中没有观察到凝块形成并产生整体较低的GFs释放。此外,凝血酶、CaCl2+凝血酶和I型胶原激活的PRP可立即释放PDGF和TGF-β1,并随时间的推移保持稳定,而血管内皮生长因子则从15 min到24 h有增加的趋势。
Kutlu等[24] 以PRP壳聚糖凝胶组和PRP冻干壳聚糖"海绵"支架组为实验组和未活化的PRP和Ⅰ型胶原活化的PRP为对照组 不同PRP制备方法对血小板活性的影响,PRP负载壳聚糖生长因子的释放动力学 凝胶组GFs呈持续释放,而海绵组GFs呈突发性释放。凝胶组血小板源性GF-BB、IGF-1和转化GF-β1释放延长至20 d,两组生物活性均保持不变
表2 干细胞在肩袖损伤中的应用研究
作者 方法 研究目的 结果
Chen等[38] 随机对照研究,SD大鼠肩袖损伤模型接受或不接受ADCs增强修复(n=120) 评估人脂肪干细胞在肩袖损伤修复中的作用 实验组肌腱组织纤维排列改善,炎性细胞明显减少,失效载荷增加,抗拉强度增加
Mora等[39] 随机对照研究,SD大鼠模型接受或不接受ASCs增强修复(n=50) 评估脂肪干细胞是否可以改善肩袖修复的生物力学和组织学特性 实验组未改善肌腱到骨愈合的生物力学特性,但是实验组炎症反应较少
Kim等[40] 随机对照研究,新西兰大白兔模型接受或不接受ASCs增强修复(n=11) 阐释脂肪干细胞中IGF-1的信号传导机制 实验组中IGF-1和肌球蛋白重链基因(Myosin heavy chain, MyHC)呈现高表达,可协助肩袖肌肉再生
Wang等[41] 随机对照研究;假手术组(14只)和双侧冈上肌腱损伤模型组(21只) 脂肪干细胞来源的外切体对兔慢性肩袖撕裂模型脂肪浸润和腱-骨愈合的影响 18周时实验组脂肪浸润(14.01% vs 62.85%)明显低于生理盐水组(21.79% vs 63.07%)(P<0.001),与修复时间(10.88% vs 62.64%)差异无统计学意义(P=0.127)。在肌腱-骨愈合方面,实验组显示出比生理盐水组更高的组织学评分和更多的修复部位新生的纤维软骨。在生物力学测试方面,实验组显示出明显高于生理盐水组的极限载荷、僵硬和应力
Shin等[42] 对照实验室研究;从大鼠脂肪组织中分离培养MSCs,用温敏培养皿制备细胞片。本实验分3组:修复组、修复后细胞板移植组和单纯细胞板组(n=36) 评价单层干细胞移植修复皮损的效果 HE染色修复后细胞片组评分(5.75±0.95)分显著高于单纯修复组(2.75±0.50)分和单纯细胞板移植组(3.25±0.50)分(P<0.001)。藏红染色显示,修复后细胞板移植组纤维软骨面积(0.516±0.04)mm2大于修复组(0.316±0.06)mm2和单纯细胞板移植组(0.326±0.03)mm2P=0.001)。在Micro-CT上,修复后细胞板移植组的骨体积/总体积比值(23.98%,61.75%)显著高于其他组(P<0.039),其余各值无显著差异。在生物力学测试中,修复后细胞片移植组(修复后4周)的生物力学测试结果显著高于其他组(P<0.005)
Rak等[43] 对照实验室研究32只新西兰大白兔随机分为4组:(1)生理盐水;(2)hUCB-MSCs;(3)不含MSCs的3D生物打印载体;(4)移植含有hUCB-MSCs的3D生物打印载体 评价以hUCb-MSCs为载体的三维生物打印支架在兔慢性肩袖撕裂模型中的再生效果 组织化学和运动分析显示4组新生的I型胶原纤维、行走距离、快走时间和平均行走速度均大于2组。此外,与3组相比,4组再生肌腱纤维更突出,运动分析参数更好。然而,尽管2、3、4组肩袖撕裂大小与对照组相比显著减小,但三组之间没有显著差异
Park等[44] 随机对照研究,新西兰大白兔模型随机分为三组接受或不接受MSCs治疗(n=30) 评估人脐带血来源MSCs在肩袖损伤修复中的作用 MSCs诱导了肩袖撕裂肌腱的再生,并且再生肌腱主要是含有I型胶原蛋白
Gumucio等[45] 随机对照研究,SD大鼠模型接受或不接受SVFCs增强修复(n=26) 评估SVFCs促进肩袖损伤修复的作用 实验组修复组织纤维化减少了40%,但是在生物力学方面没有明显差异
Ellera等[46] 回顾性研究,患者接受自体BMMC增强修复治疗(n=14) 探讨自体BMMC辅助常规修复技术治疗肩袖撕裂的作用 随访12个月,MRI显示肌腱完整(14/14),冈上肌腱及远端肌腹出现低信号区8例(8/14),法氏囊及肌腱地形部高信号隆起小圆形伪影11例(11/14)。6例(6/14)在临界区形成高信号区。在接下来的1年中,所有患者的临床结果都没有改变,BMMC是目前用于提高受损肌腱组织质量的其他生物学方法的一种安全和有前途的替代方法
Hernigou等[47] 随机对照研究,患者接受或不接受MSCs治疗(n=90) 评估MSCs增强肩袖损伤修复的作用 实验组治愈率提高,再撕裂数量减少
表3 生物补片或支架在肩袖修复中的应用研究
作者 方法 研究目的 结果
Smith等[48] 对照实验;7种不同生物补片进行力学性能测试并与天然肌腱进行对比 评估不同生物补片的机械性能 与生物补片相比,合成补片的失效载荷要更好,但都比不上自体肌腱的力学性能
Gniesmer等[50] 对照实验;24只SD大鼠分为多孔聚合物贴片(对照)(n=8)、未改性聚己内酯纤维垫(n=7)或壳聚糖包覆聚己内酯纤维垫(n=9)组并测试其微循环参数 评估多孔聚合物贴片、未改性聚己内酯纤维垫)或壳聚糖包覆聚己内酯纤维垫的促血管生成作用 在第14天,改性后的材料血管化显著增加,免疫细胞激活减少,肩袖撕裂修复后的临床结果有所改善
Derwin等[52] 随机对照研究,犬动物模型接受或不接受聚L丙交酯增强修复(n=8) 评估聚L丙交酯的作用及生物力学性能 实验组表现出更好的生物相容性,极限载荷增加,肌腱回缩更少,有更多的肌腱愈合横截面积
Arnoczky等[54] 回顾性研究,7例接受牛胶原蛋白补片增强修复的患者进行不同时间活检 评估牛胶原蛋白补片的作用 受试者的胶原植入物的活组织检查显示细胞并入、组织形成和成熟、植入物吸收和生物相容性
Gilot等[55] 随机对照研究,新西兰大白兔模型随机分为三组接受或不接受MSCs治疗(n=30) 评估人脐带血来源MSCs在肩袖损伤修复中的作用 MSC诱导了肩袖撕裂肌腱的再生,并且再生肌腱主要是含有I型胶原蛋白
Consigliere等[56] 前瞻性研究,细胞外基质补片修复肩袖大到巨大撕裂的患者(n=10) 观察在一系列接受关节镜下肩袖修复的患者中,应用细胞外基质补片增强肩袖修复大到巨大面积撕裂的效果 恒定评分由术前的53分(SD=4)提高到最终随访时的75分(SD=11)。平均牛津评分也由术前的30分(SD=8)增加到最后随访时的47分(SD=10)。VAS由术前的7分(SD=2)提高到末次随访时的0.6分(SD=0.8)
Shepherd等[57] 前瞻性研究,患者接受合成补片增强修复肩袖损伤(n=60) 评估猪脱细胞基质补片补片作为肌腱替代物桥接大量不可修复的肩袖缺损的长期结果 术后9.7年,与术前相比,患者疼痛不严重,总体肩部功能更强。患者也有更多的被动外旋和外展。所有的补片都留在原地
Neumann等[58] 前瞻性研究,患者接受或不接受猪脱细胞真皮基质补片增强修补 评估猪脱细胞真皮基质修复肩袖损伤的作用 实验组MASES评分具有良好的主观功能。患者在疼痛、活动范围和手部肌肉力量方面有显著改善。术后超声显示,91.8%的患者修复完好
Barber等[59] 随机对照研究,患者接受或不接受脱细胞真皮同种补片增强修复(n=42) 评估同种脱细胞真皮基质补片安全性和有效性 实验组ASES评分和恒定评分更好,肩袖完整性维持的更好
Agrawal等[60] 回顾性研究,回顾14例接受同种脱细胞真皮基质补片增强修复患者的临床效果 评估同种脱细胞真皮基质补片的效果 术后肩袖完整率更高
Gupta等[65] 26例(27肩)患者接受真皮组织基质异种移植重建不可修复的大面积或全层2腱肩袖撕裂 评估异种真皮基质修复肩袖损伤的作用 实验组SF-12和ASES评分得到改善
[1]
Snyder SJ, Arnoczky SP, Bond JL, et al. Histologic evaluation of a biopsy specimen obtained 3 months after rotator cuff augmentation with GraftJacket Matrix [J]. Arthroscopy, 2009, 25(3): 329-333.
[2]
Dierckman BD, Ni JJ, Karzel RP, et al. Excellent healing rates and patient satisfaction after arthroscopic repair of medium to large rotator cuff tears with a single-row technique augmented with bone marrow vents [J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(1): 136-145.
[3]
Milano G, Saccomanno MF, Careri S. Efficacy of marrow — —stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study [J]. Arthroscopy, 2013, 29(5): 802-810.
[4]
Taniguchi N, Suenaga N, Oizumi N, et al. Bone marrow stimulation at the footprint of arthroscopic surface-holding repair advances cuff repair integrity [J]. J Shoulder Elbow Surg, 2015, 24(6): 860-866.
[5]
Osti L, Del Buono A, Maffulli N. Microfractures at the rotator cuff footprint: a randomised controlled study [J]. Int Orthop, 2013, 37(11): 2165-2171.
[6]
Omer MD, Michael RC. The Role of Platelet-rich Plasma in Rotator Cuff Repair [J]. Sports Med Arthrosc Rev, 2011, 19(13):244-250.
[7]
Tomasz B, David MDE. Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) Surgical Adjuvants, Preparations for In Situ Regenerative Medicine and Tools for Tissue Engineering [J]. Curr Pharm Biotechnol, 2012, 13(17):1121-1130.
[8]
David MDE, Isabel A, Matthias AZ, et al. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine current consensus, clinical implications and perspectives [J]. Muscles Ligaments Tendons J, 2014, 4(1):3-9.
[9]
Moraes VY LM, Tamaoki MJ, Faloppa F, et al. Platelet-rich therapies for musculoskeletal soft tissue injuries [J]. Cochrane Database Syst Rev, 2013, 23,(12):CD010071.
[10]
Jo CH, Shin JS, Shin WH, et al. Platelet-rich plasma for arthroscopic repair of medium to large rotator cuff tears: a randomized controlled trial [J]. Am J Sports Med, 2015, 43(9): 2102-2110.
[11]
Dukan R, Bommier A, Rousseau MA, et al. Arthroscopic knotless tape bridging with autologous platelet-rich fibrin gel augmentation: functional and structural results [J]. Phys Sportsmed, 2019, 47(4): 455-462.
[12]
Snow M, Hussain F, Pagkalos J, et al. The Effect of Delayed Injection of Leukocyte-Rich Platelet-Rich Plasma Following Rotator Cuff Repair on Patient Function: A Randomized Double-Blind Controlled Trial [J]. Arthroscopy, 2020, 36(3): 648-657.
[13]
Cross JA, Cole BJ, Spatny KP, et al. Leukocyte-Reduced Platelet-Rich Plasma Normalizes Matrix Metabolism in Torn Human Rotator Cuff Tendons [J]. Am J Sports Med, 2015, 43(12): 2898-2906.
[14]
Martinelli D, Fornara P, Stecco A, et al. Does Intraoperative Platelet-rich Plasma Improve Clinical and Structural Outcomes after Arthroscopic Repair of Isolated Tears of the Supraspinatus Tendon? [J]. Indian J Orthop, 2019, 53(1): 77-81.
[15]
Bergeson AG, Tashjian RZ, Greis PE, et al. Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears [J]. Am J Sports Med, 2012, 40(2): 286-293.
[16]
Castricini R, Longo UG, De Benedetto M, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial [J]. Am J Sports Med, 2011, 39(2): 258-265.
[17]
Zumstein MA, Rumian A, Thelu CE, et al. SECEC Research Grant 2008 II: Use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study [J]. J Shoulder Elbow Surg, 2016, 25(1): 2-11.
[18]
Chahal J, Van Thiel GS, Mall N, et al. The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis [J]. Arthroscopy, 2012, 28(11): 1718-1727.
[19]
Vavken P, Sadoghi P, Palmer M, et al. Platelet-Rich Plasma Reduces Retear Rates After Arthroscopic Repair of Small- and Medium-Sized Rotator Cuff Tears but Is Not Cost-Effective [J]. Am J Sports Med, 2015, 43(12): 3071-3076.
[20]
Warth RJ, Dornan GJ, James EW, et al. Clinical and structural outcomes after arthroscopic repair of full-thickness rotator cuff tears with and without platelet-rich product supplementation: a meta-analysis and meta-regression [J]. Arthroscopy, 2015, 31(2): 306-320.
[21]
Cai YZ, Zhang C, Lin XJ. Efficacy of platelet-rich plasma in arthroscopic repair of full-thickness rotator cuff tears: a meta-analysis [J]. J Shoulder Elbow Surg, 2015, 24(12): 1852-1859.
[22]
Hurley ET, Lim Fat D, Moran CJ, et al. The Efficacy of Platelet-Rich Plasma and Platelet-Rich Fibrin in Arthroscopic Rotator Cuff Repair: A Meta-analysis of Randomized Controlled Trials [J]. Am J Sports Med, 2019, 47(3): 753-761.
[23]
Cavallo C, Roffi A, Grigolo B, et al. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules [J]. Biomed Res Int, 2016, 2016:6591717.
[24]
Kutlu B, Tigli Aydin RS, Akman AC, et al Platelet-rich plasma-loaded chitosan scaffolds: preparation and growth factor release kinetics [J]. J Biomed Mater Res B Appl Biomater, 2013, 101(1): 28-35.
[25]
Pittenger MF MAM, Beck SC, Jaiswal RK,et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells [J]. Science,1999, 284(5411):5143-5147.
[26]
Bunnell BA, Flaat M, Gagliardi C, et al. Adipose-derived stem cells: isolation, expansion and differentiation [J]. Methods, 2008, 45(2): 115-120.
[27]
Brown JP, Galassi TV, Stoppato M, et al. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors [J]. Stem Cell Res Ther, 2015, 6:89.
[28]
Nerurkar NL, Sen S, Huang AH, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement [J]. Spine (Phila Pa 1976), 2010, 35(8): 867-873.
[29]
Estes BT, Diekman BO, Gimble JM, et al. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype [J]. Nat Protoc, 2010, 5(7): 1294-1311.
[30]
Luu YK, Capilla E, Rosen CJ, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity [J]. J Bone Miner Res, 2009, 24(1): 50-61.
[31]
Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine [J]. Exp Mol Med, 2013, 45:e54.
[32]
Caplan AI. Mesenchymal Stem Cells Cell-Based Reconstructive Therapy in Orthopedics [J]. Tissue Eng Part A, 2005, 11(17-18):1198-1211.
[33]
Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche [J]. Nat Med, 2007, 13(10): 1219-1227.
[34]
Wang JH, Nirmala X. Application of Tendon Stem/Progenitor Cells and Platelet-Rich Plasma to Treat Tendon Injuries [J]. Oper Tech Orthop, 2016, 26(2): 68-72.
[35]
Zhang J, Wang JH. Moderate Exercise Mitigates the Detrimental Effects of Aging on Tendon Stem Cells [J]. PLoS One, 2015, 10(6): e0130454.
[36]
Lee JY, Zhou Z, Taub PJ, et al. BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo [J]. PLoS One, 2011, 6(3): e17531.
[37]
Zhou Z, Akinbiyi T, Xu L, et al. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate [J]. Aging Cell, 2010, 9(5): 911-915.
[38]
Chen HS, Su YT, Chan TM, et al. Human adipose-derived stem cells accelerate the restoration of tensile strength of tendon and alleviate the progression of rotator cuff injury in a rat model [J]. Cell Transplant, 2015, 24(3): 509-520.
[39]
Mora MV, Antuña SA, Arranz MG, et al. Application of adipose tissue-derived stem cells in a rat rotator cuff repair model [J]. Injury, 2014, 45:S22-S27.
[40]
Kim SH, Chung SW, Oh JH. Expression of insulin-like growth factor type 1 receptor and myosin heavy chain in rabbit’s rotator cuff muscle after injection of adipose-derived stem cell [J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(11): 2867-2873.
[41]
Wang C, Hu Q, Song W, et al. Adipose Stem Cell-Derived Exosomes Decrease Fatty Infiltration and Enhance Rotator Cuff Healing in a Rabbit Model of Chronic Tears [J]. Am J Sports Med, 2020, 48(6): 1456-1464.
[42]
Shin MJ, Shim IK, Kim DM, et al. Engineered Cell Sheets for the Effective Delivery of Adipose-Derived Stem Cells for Tendon-to-Bone Healing [J]. Am J Sports Med, 2020, 48(13): 3347-3358.
[43]
Rak Kwon D, Jung S, Jang J, et al. A 3-Dimensional Bioprinted Scaffold With Human Umbilical Cord Blood-Mesenchymal Stem Cells Improves Regeneration of Chronic Full-Thickness Rotator Cuff Tear in a Rabbit Model [J]. Am J Sports Med, 2020, 48(4): 947-958.
[44]
Park GY, Kwon DR, Lee SC. Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model [J]. Stem Cells Transl Med, 2015, 4(11): 1344-1351.
[45]
Gumucio JP, Flood MD, Roche SM, et al. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear [J]. Int Orthop, 2016, 40(4): 759-764.
[46]
Ellera Gomes JL, da Silva RC, Silla LM, et al. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells [J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(2): 373-377.
[47]
Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study [J]. Int Orthop, 2014, 38(9): 1811-1818.
[48]
Smith RDJ, Zargar N, Brown CP, et al. Characterizing the macro and micro mechanical properties of scaffolds for rotator cuff repair [J]. J Shoulder Elbow Surg, 2017, 26(11): 2038-2046.
[49]
Ricchetti ET, Aurora A, Iannotti JP, et al. Scaffold devices for rotator cuff repair [J]. J Shoulder Elbow Surg, 2012, 21(2): 251-265.
[50]
Gniesmer S, Brehm R, Hoffmann A, et al. Vascularization and biocompatibility of poly(epsilon-caprolactone) fiber mats for rotator cuff tear repair [J]. PLoS One, 2020, 15(1): e0227563.
[51]
Chen C, Chen Y, Li M, et al. Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: A novel technique to avoid in-vitro loading of cells [J]. Biomaterials, 2020, 250:119996.
[52]
Derwin KA, Codsi MJ, Milks RA, et al. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device [J]. J Bone Joint Surg Am, 2009, 91(5): 1159-1171.
[53]
Cole BJ, Gomoll AH, Yanke A, et al. Biocompatibility of a polymer patch for rotator cuff repair [J]. Knee Surg Sports Traumatol Arthrosc, 2007, 15(5): 632-637.
[54]
Arnoczky SP, Bishai SK, Schofield B, et al. Histologic Evaluation of Biopsy Specimens Obtained After Rotator Cuff Repair Augmented With a Highly Porous Collagen Implant [J]. Arthroscopy, 2017, 33(2): 278-283.
[55]
Gilot GJ, Alvarez-Pinzon AM, Barcksdale L, et al. Outcome of Large to Massive Rotator Cuff Tears Repaired With and Without Extracellular Matrix Augmentation: A Prospective Comparative Study [J]. Arthroscopy, 2015, 31(8): 1459-1465.
[56]
Consigliere PPI, Sarkhel T, Gupta R, et al. Preliminary Results of a Consecutive Series of Large & Massive Rotator Cuff Tears Treated with Arthroscopic Rotator Cuff Repairs Augmented with Extracellular Matrix [J]. Archives Bone Joint Surg,2017, 5(1):14-21.
[57]
Shepherd HM, Lam PH, Murrell GA. Synthetic Patch Rotator Cuff Repair: A 10-year Follow-Up [J]. Shoulder Elbow, 2014, 6(1): 35-39.
[58]
Neumann JA, Zgonis MH, Rickert KD, et al. Interposition Dermal Matrix Xenografts: A Successful Alternative to Traditional Treatment of Massive Rotator Cuff Tears [J]. Am J Sports Med, 2017, 45(6): 1261-1268.
[59]
Barber FA, Burns JP, Deutsch A, et al. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair [J]. Arthroscopy, 2012, 28(1): 8-15.
[60]
Agrawal V. Healing rates for challenging rotator cuff tears utilizing an acellular human dermal reinforcement graft [J]. Int J Shoulder Surg, 2012, 6(2): 36-44.
[61]
Iannotti JP, Deutsch A, Green A, et al. Time to failure after rotator cuff repair: a prospective imaging study [J]. J Bone Joint Surg Am, 2013, 95(11): 965-971.
[62]
Boileau P, Brassart N, Watkinson DJ,et al. Arthroscopic Repair of Full-Thickness Tears of the Supraspinatus Does the Tendon Really Heal [J]. J Bone Joint Surg Am, 2005, 87(86):1229-1240.
[63]
Derwin KA, Badylak SF, Steinmann SP, et al. Extracellular matrix scaffold devices for rotator cuff repair [J]. J Shoulder Elbow Surg, 2010, 19(3): 467-476.
[64]
Wong I, Burns J, Snyder S. Arthroscopic GraftJacket repair of rotator cuff tears [J]. J Shoulder Elbow Surg, 2010, 19 (2 Suppl): 104-109.
[65]
Gupta AK, Hug K, Berkoff DJ, et al. Dermal tissue allograft for the repair of massive irreparable rotator cuff tears [J]. Am J Sports Med, 2012, 40(1): 141-147.
[66]
Sears BW, Choo A, Yu A, et al. Clinical outcomes in patients undergoing revision rotator cuff repair with extracellular matrix augmentation [J]. Orthopedics, 2015, 38(4): e292-296.
[67]
Joseph PI, Michael JC, Young WK, et al. Porcine Small Intestine Submucosa Augmentation of Surgical Repair of Chronic Two-Tendon Rotator Cuff Tears [J]. J Bone Joint Surg Am, 2006, 88(86):1238-1244.
[68]
Bryant D, Holtby R, Willits K, et al. A randomized clinical trial to compare the effectiveness of rotator cuff repair with or without augmentation using porcine small intestine submucosa for patients with moderate to large rotator cuff tears: a pilot study [J]. J Shoulder Elbow Surg, 2016, 25(10): 1623-1633.
[69]
Greiner S, Ide J, Van Noort A,et al. Local rhBMP-12 on an Absorbable Collagen Sponge as an Adjuvant Therapy for Rotator Cuff Repair - A Phase 1, Randomized, Standard of Care Control, Multicenter Study: Safety and Feasibility [J]. Am J Sports Med, 2015, 43(8): 1994-2004.
[70]
Pauly S, Klatte F, Strobel C, et al. BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro [J]. J Shoulder Elbow Surg, 2012, 21(4): 464-473.
[71]
Lipner J, Shen H, Cavinatto L, et al. In Vivo Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-to-Bone Repair [J]. Tissue Eng Part A, 2015, 21(21-22): 2766-2774.
[72]
Kabuto Y, Morihara T, Sukenari T, et al. Stimulation of Rotator Cuff Repair by Sustained Release of Bone Morphogenetic Protein-7 Using a Gelatin Hydrogel Sheet [J]. Tissue Eng Part A, 2015, 21(13-14): 2025-2033.
[73]
Wolfman NM, Hattersley G, Cox K, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family [J]. J Clin Invest, 1997, 100(2): 321-330.
[74]
Mikic B, Bierwert L, Tsou D. Achilles tendon characterization in GDF-7 deficient mice [J]. J Orthop Res, 2006, 24(4): 831-841.
[75]
Mikic B, Rossmeier K, Bierwert L. Sexual dimorphism in the effect of GDF-6 deficiency on murine tendon [J]. J Orthop Res, 2009, 27(12): 1603-1611.
[76]
Chhabra A, Tsou D, Clark RT, et al. GDF-5 deficiency in mice delays Achilles tendon healing [J]. J Orthop Res, 2003, 21(25):826-835.
[77]
Gulotta LV, Kovacevic D, Packer JD, et al. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model [J]. Am J Sports Med, 2011, 39(1): 180-187.
[78]
Lamplot JD, Angeline M, Angeles J, et al. Distinct effects of platelet-rich plasma and BMP13 on rotator cuff tendon injury healing in a rat model [J]. Am J Sports Med, 2014, 42(12): 2877-2887.
[79]
Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing [J]. Connect Tissue Res, 2011, 52(2): 87-98.
[80]
Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-beta3 improves tendon-bone healing after rotator cuff repair [J]. Am J Sports Med, 2011, 39(4): 811-819.
[81]
Manning CN, Kim HM, Sakiyama-Elbert S, et al. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model [J]. J Orthop Res, 2011, 29(7): 1099-1105.
[82]
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway [J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(3): 215-266.
[83]
Yonemitsu R, Tokunaga T, Shukunami C, et al. Fibroblast Growth Factor 2 Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Repair of Chronic Tears [J]. Am J Sports Med, 2019, 47(7): 1701-1712.
[84]
Tokunaga T, Shukunami C, Okamoto N, et al. FGF-2 Stimulates the Growth of Tenogenic Progenitor Cells to Facilitate the Generation of Tenomodulin-Positive Tenocytes in a Rat Rotator Cuff Healing Model [J]. Am J Sports Med, 2015, 43(10): 2411-2422.
[85]
Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes [J]. Int J Nanomedicine, 2014, 9:2373-2385.
No related articles found!
阅读次数
全文


摘要