切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2019, Vol. 07 ›› Issue (02) : 157 -168. doi: 10.3877/cma.j.issn.2095-5790.2019.02.009

所属专题: 文献

肩肘之窗

美国放射学会适宜性标准®:创伤性肩痛
张晓萌1, 陈建海1   
  1. 1. 100044 北京大学人民医院创伤骨科
  • 收稿日期:2019-02-16 出版日期:2019-05-05
  • 基金资助:
    国家自然科学基金主任基金(31640045); 国家自然科学基金面上项目(31671246); 国家重点研发计划专项(2016YFC110604); 教育部创新团队项目(IRT-16R01)

ACR appropriateness criteria®_ shoulder pain–traumatic

Xiaomeng Zhang1, Jianhai Chen1   

  • Received:2019-02-16 Published:2019-05-05
引用本文:

张晓萌, 陈建海. 美国放射学会适宜性标准®:创伤性肩痛[J]. 中华肩肘外科电子杂志, 2019, 07(02): 157-168.

Xiaomeng Zhang, Jianhai Chen. ACR appropriateness criteria®_ shoulder pain–traumatic[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2019, 07(02): 157-168.

表1 适宜性分类名称和定义
表2 相对辐射量有效剂量估计范围(mSv)
表3 任何病因的创伤性肩痛初次影像学检查
表4 非局限性肩痛影像学检查阴性时需要做的进一步影像学检查
表5 X线检查示肱骨头或肱骨颈骨折时需要做的进一步影像学检查
表6 X线检查示肩胛骨骨折时需要做的进一步影像学检查
表7 X线检查示Bankart损伤或Hill-Sachs损伤时需要做的进一步影像学检查
表8 X线检查正常,查体和病史与脱位事件或不稳定相符时需要做的进一步影像学检查
表9 X线检查正常,查体发现与盂唇损伤相符时需要做的进一步影像学检查
表10 X线检查正常,查体发现与肩袖撕裂相符时需要做的进一步影像学检查
表11 X线检查已完成,查体发现与血管损伤相符时需要做的进一步影像学检查
表12 X线检查已完成,发现与神经源性综合征(排除神经丛病变)相符时需要做的进一步影像学检查
[1]
Chillemi C, Franceschini V, Dei Giudici L, et al. Epidemiology of isolated acromioclavicular joint dislocation [J]. Emerg Med Int, 2013, 2013(2013):171609.
[2]
Zacchilli MA, Owens BD. Epidemiology of shoulder dislocations presenting to emergency departments in the United States [J]. J Bone Joint Surg Am, 2010, 92(3):542-549.
[3]
Cerciello S, Edwards TB, Morris BJ, et al. The treatment of type III acromioclavicular dislocations with a modified Cadenat procedure: surgical technique and mid-term results [J]. Arch Orthop Trauma Surg, 2014, 134(11):1501-1506.
[4]
Kahn JH, Mehta SD. The role of post-reduction radiographs after shoulder dislocation [J]. J Emerg Med, 2007, 33(2):169-173.
[5]
Emond M, Le Sage N, Lavoie A, et al. Refinement of the Quebec decision rule for radiography in shoulder dislocation[J]. CJEM, 2009, 11(1): 36-43.
[6]
Vaisman A, Tuca VMI, De Diego MJ, et al. A novel radiographic index for the diagnosis of posterior acromioclavicular joint dislocations[J]. Am J Sports Med, 2014, 42(1):112-116.
[7]
Murachovsky J, Bueno RS, Nascimento LG, et al. Calculating anterior glenoid bone loss using the Bernageau profile view[J]. Skeletal Radiol, 2012, 41(10):1231-1237.
[8]
Griffith JF, Yung PS, Antonio GE, et al. CT compared with arthroscopy in quantifying glenoid bone loss[J]. Am J Roentgenol, 2007, 189(6):1490-1493.
[9]
Mahadeva D, Dias RG, Deshpande SV, et al. The reliability and reproducibility of the Neer classification system-digital radiography (PACS) improves agreement[J]. Injury, 2011, 42(4):339-342.
[10]
Ozaki R, Nakagawa S, Mizuno N, et al. Hill-sachs lesions in shoulders with traumatic anterior instability: evaluation using computed tomography with 3-dimensional reconstruction[J]. Am J Sports Med, 2014, 42(11):2597-2605.
[11]
Oh JH, Kim JY, Choi JA, et al. Effectiveness of multidetector computed tomography arthrography for the diagnosis of shoulder pathology: comparison with magnetic resonance imaging with arthroscopic correlation[J]. J Shoulder Elbow Surg, 2010, 19(1):14-20.
[12]
Fogerty S, King DG, Groves C, Scally A, Chandramohan M. Interobserver variation in reporting CT arthrograms of the shoulder[J]. Eur J Radiol, 2011, 80(3):811-813.
[13]
PM ES, Brandao BL, Brown E, et al. Recurrent anterior glenohumeral instability: the quantification of glenoid bone loss using magnetic resonance imaging[J]. Skeletal Radiol, 2014, 43(8):1085-1092.
[14]
Gottschalk MB, Ghasem A, Todd D, et al. Posterior shoulder instability: does glenoid retroversion predict recurrence and contralateral instability? [J]. Arthroscopy, 2015, 31(3):488-493.
[15]
Owens BD, Campbell SE, Cameron KL. Risk factors for anterior glenohumeral instability[J]. Am J Sports Med,2014, 42(11):2591-2596.
[16]
Pavic R, Margetic P, Bensic M, et al. Diagnostic value of US, MR and MR arthrography in shoulder instability[J]. Injury, 2013, 44(3): S26-S32.
[17]
Stecco A, Guenzi E, Cascone T, et al. MRI can assess glenoid bone loss after shoulder luxation: inter- and intra-individual comparison with CT[J]. Radiol Med, 2013, 118(8):1335-1343.
[18]
Magee T. 3-T MRI of the shoulder: is MR arthrography necessary? [J].Am J Roentgenol, 2009, 192(1):86-92.
[19]
Smark CT, Barlow BT, Vachon TA, et al. Arthroscopic and magnetic resonance arthrogram features of Kim's lesion in posterior shoulder instability[J]. Arthroscopy, 2014, 30(7):781-784.
[20]
Magee T. MR versus MR arthrography in detection of supraspinatus tendon tears in patients without previous shoulder surgery[J]. Skeletal Radiol, 2014, 43(1):43-48.
[21]
Merolla G, De Santis E, Campi F, et al. Infraspinatus scapular retraction test: a reliable and practical method to assess infraspinatus strength in overhead athletes with scapular dyskinesis[J]. J Orthop Traumatol, 2010, 11(2):105-110.
[22]
Wall LB, Teefey SA, Middleton WD, et al. Diagnostic performance and reliability of ultrasonography for fatty degeneration of the rotator cuff muscles[J]. J Bone Joint Surg Am, 2012, 94(12): e83.
[23]
de Jesus JO, Parker L, Frangos AJ, et al. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis[J]. Am J Roentgenol, 2009, 192(6):1701-1707.
[24]
Rutten MJ, Collins JM, de Waal Malefijt MC, et al. Unsuspected sonographic findings in patients with posttraumatic shoulder complaints[J]. J Clin Ultrasound, 2010, 38(9): 457-65.
[25]
Kamasaki T, Hayashida N, Miyamoto I, et al. PET/CT shows subjective pain in shoulder joints to be associated with uptake of (18) FFDG[J]. Nucl Med Commun, 2014, 35(1):44-50.
[26]
Shin DS, Shon OJ, Byun SJ, et al. Differentiation between malignant and benign pathologic fractures with F-18-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography[J]. Skeletal Radiol, 2008, 37(5):415-421.
[27]
Shinozaki N, Sano H, Omi R, et al. Differences in muscle activities during shoulder elevation in patients with symptomatic and asymptomatic rotator cuff tears: analysis by positron emission tomography[J]. J Shoulder Elbow Surg, 2014, 23(3):e61-e67.
[28]
Shinozaki T, Takagishi K, Ohsawa T, Yamaji T, Endo K. Pre- and postoperative evaluation of the metabolic activity in muscles associated with ruptured rotator cuffs by F-FDG PET imaging[J]. Clin Physiol Funct Imaging, 2006, 26(6):338-342.
[29]
Ackerman L, Shirazi P. Abnormal uptake in the shoulder joint area on bone scan[J]. Semin Nucl Med, 2002, 32(3):228-230.
[30]
Querellou S, Arnaud L, Williams T, et al. Role of SPECT/CT compared with MRI in the diagnosis and management of patients with wrist trauma occult fractures[J]. Clin Nucl Med, 2014, 39(1):8-13.
[31]
Rizzo PF, Gould ES, Lyden JP, et al. Diagnosis of occult fractures about the hip. Magnetic resonance imaging compared with bone scanning[J]. J Bone Joint Surg Am, 1993, 75(3):395-401.
[32]
Koike Y, Sano H, Kita A, Itoi E. Symptomatic rotator cuff tears show higher radioisotope uptake on bone scintigraphy compared with asymptomatic tears[J]. Am J Sports Med, 2013, 41(9):2028-2033.
[33]
Gulotta LV, Lobatto D, Delos D, et al. Anterior shoulder capsular tears in professional baseball players[J]. J Shoulder Elbow Surg, 2014, 23(8):e173-e178.
[34]
Nemec U, Oberleitner G, Nemec SF, et al. MRI versus radiography of acromioclavicular joint dislocation[J]. Am J Roentgenol, 2011, 197(4):968-973.
[35]
Lee JT, Nasreddine AY, Black EM, et al. Posterior sternoclavicular joint injuries in skeletally immature patients[J]. J Pediatr Orthop, 2014, 34(4):369-375.
[36]
Bahrs C, Zipplies S, Ochs BG, et al. Proximal humeral fractures in children and adolescents[J]. J Pediatr Orthop, 2009, 29(8):238-242.
[37]
Ottenheijm RP, van't Klooster IG, Starmans LM, et al. Ultrasounddiagnosed disorders in shoulder patients in daily general practice: a retrospective observational study[J]. BMC Fam Pract, 2014, 15(1):115.
[38]
Lecouvet FE, Dorzee B, Dubuc JE, et al, Jamart J, Malghem J. Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy[J]. Eur Radiol, 2007, 17(7):1763-71.
[39]
Gallo RA, Sciulli R, Daffner RH, et al. Defining the relationship between rotator cuff injury and proximal humerus fractures[J]. Clin Orthop Relat Res, 2007, 458(458):70-77.
[40]
Petersen SA, Murphy TP. The timing of rotator cuff repair for the restoration of function[J]. J Shoulder Elbow Surg, 2011, 20(1):62-68.
[41]
Poeze M, Lenssen AF, Van Empel JM, et al. Conservative management of proximal humeral fractures: can poor functional outcome be related to standard transscapular radiographic evaluation? [J]. J Shoulder Elbow Surg, 2010, 19(2):273-281.
[42]
Fjalestad T, Hole MO, Blucher J, et al. Rotator cuff tears in proximal humeral fractures: an MRI cohort study in 76 patients[J]. Arch Orthop Trauma Surg, 2010, 130(5):575-581.
[43]
Moosmayer S, Heir S, Smith HJ. Sonography of the rotator cuff in painful shoulders performed without knowledge of clinical information: results from 58 sonographic examinations with surgical correlation[J]. J Clin Ultrasound, 2007, 35(1):20-26.
[44]
Dimitroulias A, Molinero KG, Krenk DE, et al. Outcomes of nonoperatively treated displaced scapular body fractures[J]. Clin Orthop Relat Res, 2011, 469(5):1459-1465.
[45]
Armitage BM, Wijdicks CA, Tarkin IS, et al. Mapping of scapular fractures with three-dimensional computed tomography[J]. J Bone Joint Surg Am, 2009, 91(9):2222-2228.
[46]
Tadros AM, Lunsjo K, Czechowski J,et al. Usefulness of different imaging modalities in the assessment of scapular fractures caused by blunt trauma[J]. Acta Radiol, 2007, 48(1):71-75.
[47]
Bozkurt M, Can F, Kirdemir V, et al. Conservative treatment of scapular neck fracture: the effect of stability and glenopolar angle on clinical outcome[J]. Injury, 2005, 36(10):1176-1181.
[48]
Ropp AM, Davis DL. Scapular fractures: what radiologists need to know[J]. Am J Roentgenol, 2015, 205(3):491-501.
[49]
Owens BD, Nelson BJ, Duffey ML, et al. Pathoanatomy of first-time, traumatic, anterior glenohumeral subluxation events[J]. J Bone Joint Surg Am, 2010, 92(7):1605-1611.
[50]
Widjaja AB, Tran A, Bailey M, et al. Correlation between Bankart and Hill-Sachs lesions in anterior shoulder dislocation[J]. ANZ J Surg, 2006, 76(6):436-438.
[51]
Bernhardson AS, Bailey JR, Solomon DJ, et al. Glenoid bone loss in the setting of an anterior labroligamentous periosteal sleeve avulsion tear[J]. Am J Sports Med, 2014, 42(9):2136-2140.
[52]
Gyftopoulos S, Beltran LS, Yemin A, et al. Use of 3D MR reconstructions in the evaluation of glenoid bone loss: a clinical study[J]. Skeletal Radiol, 2014, 43(2):213-218.
[53]
Eisner EA, Roocroft JH, Edmonds EW. Underestimation of labral pathology in adolescents with anterior shoulder instability[J]. J Pediatr Orthop, 2012, 32(1):42-47.
[54]
Murthi AM, Ramirez MA. Shoulder dislocation in the older patient[J]. J Am Acad Orthop Surg, 2012, 20(10):615-622.
[55]
Bhatia DN, DasGupta B. Surgical treatment of significant glenoid bone defects and associated humeral avulsions of glenohumeral ligament (HAGL) lesions in anterior shoulder instability[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(7):1603-1609.
[56]
Boileau P, Thelu CE, Mercier N, et al. Arthroscopic Bristow-Latarjet combined with bankart repair restores shoulder stability in patients with glenoid bone loss[J]. Clin Orthop Relat Res, 2014, 472(8):2413-2424.
[57]
van Grinsven S, Hagenmaier F, van Loon CJ, et al. Does the experience level of the radiologist, assessment in consensus, or the addition of the abduction and external rotation view improve the diagnostic reproducibility and accuracy of MRA of the shoulder? [J]. Clin Radiol, 2014, 69(3):1157-1164.
[58]
Waldt S, Burkart A, Imhoff AB, et al. Anterior shoulder instability: accuracy of MR arthrography in the classification of anteroinferior labroligamentous injuries[J]. Radiology, 2005, 237(2):578-583.
[59]
Jonas SC, Walton MJ, Sarangi PP. Is MRA an unnecessary expense in the management of a clinically unstable shoulder? A comparison of MRA and arthroscopic findings in 90 patients[J]. Acta Orthop, 2012, 83(3):267-270.
[60]
Khoury V, Van Lancker HP, Martineau PA. Sonography as a tool for identifying engaging Hill-Sachs lesions: preliminary experience[J]. J Ultrasound Med, 2013, 32(9):1653-1657.
[61]
Antonio GE, Griffith JF, Yu AB, et al. First-time shoulder dislocation: high prevalence of labral injury and age-related differences revealed by MR arthrography[J]. J Magn Reson Imaging, 2007, 26(4):983-991.
[62]
Amin MF, Youssef AO. The diagnostic value of magnetic resonance arthrography of the shoulder in detection and grading of SLAP lesions: comparison with arthroscopic findings[J]. Eur J Radiol, 2012, 81(9):2343-2347.
[63]
Iqbal HJ, Rani S, Mahmood A, et al. Diagnostic value of MR arthrogram in SLAP lesions of the shoulder[J]. Surgeon, 2010, 8(6): 303-309.
[64]
Genovese E, Spano E, Castagna A, et al. MR-arthrography in superior instability of the shoulder: correlation with arthroscopy[J]. Radiol Med, 2013, 118(6):1022-1033.
[65]
Rowan KR, Andrews G, Spielmann A, et al. MR shoulder arthrography in patients younger than 40 years of age: frequency of rotator cuff tear versus labroligamentous pathology[J]. Australas Radiol, 2007, 51(3):257-259.
[66]
Acid S, Le Corroller T, Aswad R, et al. Preoperative imaging of anterior shoulder instability: diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy[J]. Am J Roentgenol, 2012, 198(3):661-667.
[67]
Roy JS, Braen C, Leblond J, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis[J]. Br J Sports Med, 2015, 49(20):1316-1328.
[68]
Park GY, Kim JM, Sohn SI, et al. Ultrasonographic measurement of shoulder subluxation in patients with post-stroke hemiplegia[J]. J Rehabil Med, 2007, 39(7):526-530.
[69]
Al-Shawi A, Badge R, Bunker T. The detection of full thickness rotator cuff tears using ultrasound[J]. J Bone Joint Surg Br, 2008, 90(7):889-892.
[70]
Fotiadou AN, Vlychou M, Papadopoulos P, et al. Ultrasonography of symptomatic rotator cuff tears compared with MR imaging and surgery[J]. Eur J Radiol, 2008, 68(1):174-179.
[71]
Frei R, Chladek P, Trc T, et al. Arthroscopic evaluation of ultrasonography and magnetic resonance imaging for diagnosis of rotator cuff tear[J]. Ortop Traumatol Rehabil, 2008, 10(2): 111-114.
[72]
O'Connor PJ, Rankine J, Gibbon WW, et al. Interobserver variation in sonography of the painful shoulder[J]. J Clin Ultrasound, 2005, 33(2):53-56.
[73]
Le Corroller T, Cohen M, Aswad R, et al. Sonography of the painful shoulder: role of the operator's experience[J]. Skeletal Radiol, 2008, 37(1):979-986.
[74]
Menendez ME, Ring D, Heng M. Proximal humerus fracture with injury to the axillary artery: a population-based study[J]. Injury, 2015, 46(7):1367-1371.
[75]
Bozlar U, Ogur T, Norton PT, et al. CT angiography of the upper extremity arterial system: part 1-anatomy, technique, and use in trauma patients[J]. Am J Roentgenol, 2013, 201(1):745-752.
[76]
Fritz J, Efron DT, Fishman EK. Multidetector CT and three-dimensional CT angiography of upper extremity arterial injury[J]. Emerg Radiol, 2015, 22(3):269-282.
[77]
Koman LA, Nunley JA, Wilkinson RH Jr, et al. Dynamic radionuclide imaging as a means of evaluating vascular perfusion of the upper extremity: a preliminary report[J]. J Hand Surg, 1983, 8(3):424-434.
[78]
IASP Task Force on Taxonomy. IASP taxonomy. Available at: Accessed December 4, 2017.

URL    
[79]
Bykowski J, Aulino JM, Berger KL, et al. ACR Appropriateness Criteria_ plexopathy[J]. J Am Coll Radiol, 2017, 14(5): S225-233.
[80]
Carpenter EL, Bencardino JT. Focus on advanced magnetic resonance techniques in clinical practice: magnetic resonance neurography[J]. Radiol Clin North Am, 2015, 53(3):513-529.
[81]
Marquez-Neto OR, Leite MS, Freitas T, et al. The role of magnetic resonance imaging in the evaluation of peripheral nerves following traumatic lesion: where do we stand?[J]. Acta Neurochir, 2017, 159(2):281-290.
[82]
Chhabra A, Thawait GK, Soldatos T, et al. High-resolution 3T MR neurography of the brachial plexus and its branches, with emphasis on 3D imaging[J]. Am J Neuroradiol, 2013, 34(3): 486-497.
[83]
Greyson ND, Tepperman PS. Three-phase bone studies in hemiplegia with reflex sympathetic dystrophy and the effect of disuse[J]. J Nucl Med, 1984, 25(4):423-429.
[84]
Kline SC, Holder LE. Segmental reflex sympathetic dystrophy: clinical and scintigraphic criteria[J]. J Hand Surg, 1993, 18(5):853-859.
[85]
Park SA, Yang CY, Kim CG, et al. Patterns of three-phase bone scintigraphy according to the time course of complex regional pain syndrome type I after a stroke or traumatic brain injury[J]. Clin Nucl Med, 2009, 34(11):773-776.
[86]
Ringer R, Wertli M, Bachmann LM, et al. Concordance of qualitative bone scintigraphy results with presence of clinical complex regional pain syndrome 1: meta-analysis of test accuracy studies[J]. Eur J Pain, 2012, 16(10):1347-1356.
[87]
Schurmann M, Zaspel J, Lohr P, et al. Imaging in early posttraumatic complex regional pain syndrome: a comparison of diagnostic methods[J]. Clin J Pain, 2007, 23(5):449-457.
[88]
Lee GW, Weeks PM. The role of bone scintigraphy in diagnosing reflex sympathetic dystrophy[J]. J Hand Surg, 1995, 20(3):458-463.
[89]
Wertli MM, Brunner F, Steurer J, et al. Usefulness of bone scintigraphy for the diagnosis of complex regional pain syndrome 1: a systematic review and Bayesian meta-analysis[J]. PLoS ONE, 2017, 12(3): e0173688.
[90]
American College of Radiology. ACR Appropriateness Criteria_ radiation dose assessment introduction. Available at: Accessed December 4, 2017.

URL    
No related articles found!
阅读次数
全文


摘要