[1] |
Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J]. FEBS Lett, 2018, 592(5):728-742.
|
[2] |
Mcbride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse[J]. Current Biology Cb, 2006, 16(14):551-560.
|
[3] |
Boles RG, Gardner A. Is a "mitochondrial psychiatry" in the future? a review[J]. Curr Psychiatry Rev, 2005, 1(3):255-271.
|
[4] |
Lesnefsky EJ, Moghaddas S, Tandler B, et al. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure[J]. J Mol Cell Cardiol, 2001, 33(6):1065-1089.
|
[5] |
Nd DG, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev, 2015, 29(19):1981-1991.
|
[6] |
Huang W, Wang T, Jiang B, et al. Mitochondrial biogenesis in ventral spinal cord and nerve following sciatic nerve axotomy[J]. Int J Clin Exp Med, 2017, 10(10):14386-14393.
|
[7] |
Li X, Fang P, Mai J, et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers[J]. J Hematol Oncol, 2013, 6(1):19.
|
[8] |
Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH Oxidases[J]. Contrib Microbiol, 2008, 15(15):164-187.
|
[9] |
Hayyan M, Hashim MA, Alnashef IM. Superoxide Ion: Generation and Chemical Implications[J]. Chem Rev, 2016, 116(5):3029-3085.
|
[10] |
Devasagayam TP, Tilak JC, Boloor KK, et al. Free radicals and antioxidants in human health: current status and future prospects[J]. J Assoc Physicians India, 2004, 52(794804):794.
|
[11] |
Turrens JF. Mitochondrial formation of reactive oxygen species[J]. J Physiol, 2003, 552(Pt 2):335.
|
[12] |
Muller F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging[J]. J Am Aging Assoc, 2000, 23(4):227-253.
|
[13] |
Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space[J]. Biochem J, 2001, 353(2):411-416.
|
[14] |
Conner GE, Salathe M, Forteza R. Lactoperoxidase and hydrogen peroxide metabolism in the airway[J]. Am J Respir Crit Care Med, 2002, 166(2):57-61.
|
[15] |
Brooker RJ. Genetics: analysis and principles[M]. 4th ed. New York:McGraw-Hill Science, 2011.
|
[16] |
Mattiazzi M, Vijayvergiya C, Gajewski CD, et al. The mtDNA T8993G (NARP)mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants[J]. Hum Mol Genet, 2004, 13(8):869-879.
|
[17] |
Nijtmans LG, Henderson NS, Attardi G, et al. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene[J]. J Biol Chem, 2001, 276(9):6755-6762.
|
[18] |
Coppedè F, Migliore L. DNA damage in neurodegenerative diseases[J]. Mutat Res/fundam Mol Mechan Mutagenesis, 2014, 776:84-97.
|
[19] |
Mattson MP, Magnus T. Ageing and neuronal vulnerability[J]. Nat Rev Neurosci, 2006, 7(4):278-294.
|
[20] |
Wang X, Michaelis EK. Selective neuronalv ulnerability to oxidative stress in the Brain[J]. Front Aging Neurosci, 2010, 2(12):12.
|
[21] |
Halliwell B. Reactive oxygen species and the central nervous system[J]. J Neurochem, 1992, 59(5):1609-1623.
|
[22] |
Guzman JN, Sanchez-Padilla J, Wokosin D, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1[J]. Nature, 2010, 468(7324):696-700.
|
[23] |
Reeve A, Simcox E, Turnbull D. Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?[J]. Ageing Res Rev, 2014, 14(100):19-30.
|
[24] |
Lotharius J, Barg S, Wiekop P, et al. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line[J]. J Biol Chem, 2002, 277(41):38884-38894.
|
[25] |
Lotharius J, Brundin P. Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson's disease[J]. Hum Mol Genet, 2002, 11(20):2395-2407.
|
[26] |
Exner N, Lutz AK, Haass C, et al. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences[J]. Embo J, 2012, 31(14):3038-3062.
|
[27] |
Francoiborra S, Vila M, Perier C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at?[J]. Neurosci A Rev J Bring Neurobiol Neurol Psychiatry, 2016, 22(3):266-277.
|
[28] |
Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease[J]. Nat Genet, 2006, 38(5):515-517.
|
[29] |
Kraytsberg Y, Kudryavtseva E, McKee AC, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons[J]. Nat Genet, 2006, 38(5):518-520.
|
[30] |
Dölle C, Flønes I, Nido GS, et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease[J]. Nat Commun, 2016, 7:13548.
|
[31] |
Tzoulis C, Schwarzlmüller T, Biermann M, et al. Mitochondrial DNA homeostasis is essential for nigrostriatal integrity[J]. Mitochondrion, 2016, 28:33-37.
|
[32] |
Parkinson GM, Dayas CV, Smith DW. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat[J]. Curr Aging Sci, 2014, 7(3):155-160.
|
[33] |
Grünewald A, Rygiel KA, Hepplewhite PD, et al. Mitochondrial DNA depletion in respiratory chain-deficient parkinson disease neurons[J]. Ann Neurol, 2016, 79(3):366-378.
|
[34] |
Hyman BT, Van Hoesen GW, Damasio AR, et al. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation[J]. Science, 1984, 225(4667):1168-1170.
|
[35] |
Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. Proc Natl Acad Sci U S A, 1985, 82(12):4245-4249.
|
[36] |
Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease[J]. J Neurochem, 2012, 120(3):419-429.
|
[37] |
Du H, Guo L, Yan S, et al. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model[J]. Proc Natl Acad Sci U S A, 2010, 107(43):18670-18675.
|
[38] |
Mossmann D, Vögtle FN, Taskin AA, et al. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation[J]. Cell Metab, 2014, 20(4):662-669.
|
[39] |
Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives [J]. Biochim Biophys Acta, 2014, 1842(8):1219-1231.
|
[40] |
Di MV, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis[J]. Curr Drug Targets CNS Neurol Dis, 2003, 2(2):95-107.
|
[41] |
Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases[J]. Nutr Neurosci, 2002, 5(5):291-309.
|
[42] |
Sena E, Wheble P, Sandercock P, et al. Systematic review and meta-analysis of the efficacy of tirilazad in experimental stroke[J]. Stroke J Cereb Circul, 2007, 38(2):388-394.
|
[43] |
Wang L, Ming L, Bo W, et al. Tirilazad for aneurysmal subarachnoid haemorrhage[J]. Cochrane Database Syst Rev, 2010, 53(2):CD006778.
|
[44] |
Bath PM, Iddenden R, Bath FJ, et al. Tirilazad for acute ischaemic stroke[J]. Cochrane Database Syst Rev, 2001, 4(4):CD002087.
|
[45] |
Bath P, Gray LJ, Bath A, et al. Effects of NXY-059 in experimental stroke: an individual animal meta-analysis[J]. Br J Pharmacol, 2009, 157(7):1157-1171.
|
[46] |
Schumacker PT. Reactive oxygen species in cancer cells: Live by the sword, die by the sword[J]. Cancer Cell, 2006, 10(3):175-176.
|
[47] |
Lemmo W. Potential interactions of prescription and over-the-counter medications having antioxidant capabilities with radiation and chemotherapy[J]. Int J Cancer, 2015, 137(11):2525-2533.
|
[48] |
Seifried HE, Mcdonald SS, Anderson DE, et al. The antioxidant conundrum in cancer[J]. Cancer Res, 2003, 63(15):4295-4298.
|
[49] |
Lawenda BD, Kelly KM, Ladas EJ, et al. Should Supplemental Antioxidant Administration Be Avoided During Chemotherapy and Radiation Therapy?[J]. J Natl Cancer Inst, 2009, 101(2):125-126.
|
[50] |
Kelso GF, Porteous CM, Coulter CV, et al. Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells ANTIOXIDANT AND ANTIAPOPTOTIC PROPERTIES[J]. J Biol Chem, 2001, 276(7):4588-4596.
|
[51] |
Skulachev VP, Anisimov VN, Antonenko YN, et al. An attempt to prevent senescence: a mitochondrial approach[J]. Biochim Biophys Acta., 2009, 1787(5):437-461.
|
[52] |
Cochemé HM, Kelso GF, James AM, et al. Mitochondrial targeting of quinones: therapeutic implications[J]. Mitochondrion, 2007, 7(1):S94-102.
|
[53] |
Murphy MP. Selective targeting of bioactive compounds to mitochondria[J]. Trends Biotechnol, 1997, 15(8):326-330.
|
[54] |
Yousif LF, Stewart KM, Dr SOK. Targeting Mitochondria with Organelle-Specific Compounds: Strategies and Applications[J]. Chembiochem, 2009, 10(13):1939-1950.
|
[55] |
Szeto HH. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents[J]. Aaps J, 2006, 8(3):E521-531.
|
[56] |
Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury[J]. J Biol Chem, 2004, 279(33):34682-34690.
|
[57] |
Winterbourn CC, Parsons-mair HN, Gebick S,et al. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides[J]. Biochem J, 2004, 381(1):241-248.
|