切换至 "中华医学电子期刊资源库"

中华肩肘外科电子杂志 ›› 2018, Vol. 06 ›› Issue (03) : 233 -238. doi: 10.3877/cma.j.issn.2095-5790.2018.03.013

所属专题: 文献

综述

人工软骨支架材料研究进展
于斐1, 张培训1,(), 寇玉辉1,()   
  1. 1. 100044 北京大学人民医院创伤骨科
  • 收稿日期:2018-04-18 出版日期:2018-08-05
  • 通信作者: 张培训, 寇玉辉
  • 基金资助:
    国家自然科学基金面上项目(31571235,31571236,31771322); 北京大学人民医院院内基金(RDB2015-11,RDH2017-01); 教育部创新团队(IRT-16R01)

Research process in artificial cartilage scaffold materials

Fei Yu1, Peixun Zhang1(), Yuhui Kou1()   

  • Received:2018-04-18 Published:2018-08-05
  • Corresponding author: Peixun Zhang, Yuhui Kou
引用本文:

于斐, 张培训, 寇玉辉. 人工软骨支架材料研究进展[J]. 中华肩肘外科电子杂志, 2018, 06(03): 233-238.

Fei Yu, Peixun Zhang, Yuhui Kou. Research process in artificial cartilage scaffold materials[J]. Chinese Journal of Shoulder and Elbow(Electronic Edition), 2018, 06(03): 233-238.

[1]
Christensen BB,Foldager CB,Olesen ML, et al. Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee[J]. J Exp Orthop, 2015, 2(1):13.
[2]
Nakano N,Gohal C,Duong A, et al. Outcomes of cartilage repair techniques for chondral injury in the hip-a systematic review[J]. Int Orthop, 2018, 13. doi: 10.1007/s00264-018-3862-6.
[3]
Long H,Ma K,Xiao Z, et al. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase[J]. 2017, 5:e3665.
[4]
Hozumi T,Kageyama T,Ohta S, et al. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff's base formation[J]. Biomacromolecules, 2018, 19(2):288-297.
[5]
Li L,Lu C,Wang L, et al. Gelatin-based photo curable hydrogels for corneal wound repair[J]. ACS Appl Mater Interfaces. 2018, 10(16):13283-13292.
[6]
Soucy JR,Shirzaei Sani E,Portillo Lara R, et al. Photocrosslinkable gelatin/tropoelastin hydrogel adhesives for peripheral nerve repair[J]. Tissue Eng Part A, 2018, 24(17-18):1393-1405.
[7]
Chang TMS. Artificial cells: biotechnology, nanomedicine, regenerative medicine, blood substitutes, bioencapsulation, and cell/stem cell therapy[M]. Singapore World Scientific, 2007.
[8]
Song Y,Nagai N,Saijo S, et al. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery[J]. Mater Sci Eng C Mater Biol Appl, 2018, 88(1):1-12.
[9]
Fu F,Zhu X,Qin Z, et al. Differential degradation rate and underlying mechanism of a collagen/chitosan complex in subcutis, spinal cord and brain tissues of rat[J]. J Mater Sci Mater Med, 2018, 29(4):35.
[10]
Fu JH,Zhao M,Lin YR, et al. Degradable chitosan-collagen composites seeded with cells as tissue engineered heart valves[J]. Heart Lung Circ, 2017, 26(1):94-100.
[11]
Huaixan LN,Arruda SS,Leonardo AS, et al. Macroscopic, histochemical, and immunohistochemical comparison of hysterorrhaphy using catgut and chitosan suture wires[J]. J Biomed Mater Res B Appl Biomater, 2016, 104(1):50-57.
[12]
Tamer TM,Collins MN,Valachová K, et al. Mito Q loaded chitosan-hyaluronan composite membranes for wound healing[J]. Materials (Basel), 2018, 11(4)i: E569.
[13]
Moattari M,Kouchesfehani HM,Kaka G, et al. Chitosan-film associated with mesenchymal stem cells enhanced regeneration of peripheral nerves: a rat sciatic nerve model[J]. J Chem Neuroanat, 2018, 88(1):46-54.
[14]
Yao ZA,Chen FJ,Cui HL, et al. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats[J]. Neural Regen Res, 2018, 13(3):502-509.
[15]
Rosière R,Van Woensel M,Gelbcke M, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation[J]. Mol Pharm, 2018, 15(3):899-910.
[16]
Li DW,He J,He FL, et al. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells[J]. J Biomater Appl, 2018, 32(9):1164-1173.
[17]
Han X,Kuang X,Wang Z, et al. Silk fibroin improves the release of nerve growth factor from hydroxyapatite particles maintaining its bioactivity[J]. Curr Drug Deliv, 2018, 15(6):879-886.
[18]
Ebrahimi A,Sadrjavadi K,Hajialyani M, et al. Preparation and characterization of silk fibroin hydrogel as injectable implants for sustained release of Risperidone[J]. Drug Dev Ind Pharm, 2018, 44(2):199-205.
[19]
王艳. 层粘连蛋白/岩藻聚糖类基膜微环境的构建及微流控芯片内应用[D]. 西南交通大学, 2015.
[20]
赵荧晖. 基于透明质酸材料的人诱导多能干细胞培养基质研究[D]. 北京大学, 2013.
[21]
徐红梅,任娜,宣怡红,等.离子液体改性聚乳酸共混物的降解性及毒性评价[J].高分子材料科学与工程, 2014, 30(1):113-117.
[22]
Tyler B,Gullotti D,Mangraviti A, et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications[J]. Adv Drug Deliv Rev, 2016, 107:163-175.
[23]
Muhonen V,Salonius E,Haaparanta AM, et al. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study[J]. J Orthop Res, 2016, 34(5):745-753.
[24]
徐栋,崔国庆.肩关节可吸收缝合锚钉术后骨质溶解研究进展[J/CD].中华肩肘外科电子杂志, 2014, 2(3):196-199.
[25]
Binan L,Tendey C,De Crescenzo G, et al. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lacticacid/gelatin scaffold[J]. Biomaterials, 2014, 35(2):664-674.
[26]
Chen Z,Zhang Z,Feng J, et al. Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo[J]. ACS Appl Mater Interfaces, 2018, 10(14):11961-11971.
[27]
Ling LE,Feng L,Liu HC, et al. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells[J]. J Biomed Mater Res A, 2015, 103(5):1732-1745.
[28]
Lorenz J,Barbeck M,Kirkpatrick CJ, et al. Injectable Bone Substitute Material on the Basis of β-TCP and Hyaluronan Achieves Complete Bone Regeneration While Undergoing Nearly Complete Degradation[J]. Int J Oral Maxillofac Implants, 2018, 33(3):636-644.
[29]
范克山. 富含β-磷酸三钙的煅烧骨填充材料修复牙槽骨缺损的临床效果评价[D].青岛大学, 2017.
[30]
刘庆阳,卢建熙,周智华,等.注射填充β-磷酸三钙生物陶瓷透明质酸混悬液的实验研究[J].中国美容医学, 2016, 25(08):44-46.
[31]
Chai NL,Feng J,Li LS, et al. Effect of polyglycolic acid sheet plus esophageal stent placement in preventing esophageal stricture after endoscopic submucosal dissection in patients with earlystage esophageal cancer: A randomized, controlled trial[J]. World J Gastroenterol, 2018, 24(9):1046-1055.
[32]
石磊,张耀南,赵立连,薛庆云.人工肩关节发展及治疗现状[J/CD].中华肩肘外科电子杂志, 2014, 2(4):255-259.
[33]
Formhals A. Process and apparatus for preparing artificial threads: US, 1.975.504[P]. 1934-10-20.
[34]
董瑞华. 原位静电纺丝技术在生物医学领域的应用研究[D].青岛大学, 2017.
[35]
Zhao Y,Gong J,Niu C, et al. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells[J]. J Biomater Sci Polym Ed, 2017, 28(18):2171-2185.
[36]
Liu X,Shao W,Luo M, et al. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers[J]. Nanomaterials (Basel), 2018,8(4): E184.
[37]
Li Y,Zhang Z,Zhang Z. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair[J]. Cells Tissues Organs, 2018, 205(1):20-31.
[38]
Shefa AA,Amirian J,Kang HJ, et al. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing[J]. Carbohydr Polym, 2017, 177:284-296.
[39]
Mukhopadhyay SK,Naskar D,Bhattacharjee P, et al. Silk fibroin-thelebolan matrix: A promising chemopreventive scaffold for soft tissue cancer[J]. Colloids Surf B Biointerfaces, 2017, 155:379-389.
[40]
Saba I,Jakubowska W,Bolduc S, et al. Engineering Tissues without the use of a synthetic scaffold: a twenty-year history of the self-assembly method[J]. Biomed Res Int, 2018, 2018:5684679.
[41]
Ye JC,Qin Y,Wu YF, et al. Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats[J]. Spinal Cord, 2018, 56(1):90.
[42]
Xing R,Jiao T,Ma K, et al. Regulating cell apoptosis on layer-by-layer assembled multilayers of photosensitizer-coupled polypeptides and gold nanoparticles[J]. Sci Rep, 2016, 6: 26506.
[43]
Omorphos NP,Kahn L,Kalaskar DM. Design of extracellular protein based particles for intra and extra-cellular targeting[J]. Colloids Surf B Biointerfaces, 2015, 136:440-448.
[44]
Chen SH,Lei M,Xie XH, et al. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits[J]. Acta Biomater, 2013, 9(5):6711-6722.
[45]
李伟,王战伟,伍晓,等. 载淫羊藿素多孔PLGA/TCP联合微骨折术修复兔膝关节软骨缺损的初步观察[J]. 中国当代医药, 2016, 23(22):7-10.
[46]
Li M,Yuan ZP,Yu F, et al. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect[J]. Artif Cells Nanomed Biotechnol, 2018, 26:1-11.
[47]
Zhou F,Zhang X,Cai D, et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair[J]. Acta Biomater, 2017, 63:64-75.
[48]
Su JY,Chen SH,Chen YP, et al. Evaluation of magnetic nanoparticle-labeled chondrocytes cultivated on a type ii collagen-chitosan/poly(lactic-co-glycolic) acid biphasic scaffold[J]. Int J Mol Sci, 2017, 18(1): E87.
[49]
Kong Y,Zhang Y,Zhao X, et al. Carboxymethyl-chitosan attenuates inducible nitric oxide synthase and promotes interleukin-10 production in rat chondrocytes[J]. Exp Ther Med, 2017, 14(6):5641-5646.
[50]
崔文岗,雷鸣,石岩,等. 白藜芦醇对组织工程化软骨的保护作用及其机制的实验研究[J]. 中华风湿病学杂志, 2013,(5):327-331, 361.
[51]
Zhao P,Liu S,Bai Y, et al. hWJECM-derived oriented scaffolds with autologous chondrocytes for rabbit cartilage defect repairing[J]. Tissue Eng Part A, 2018, 24(11-12):905-914.
[52]
Mahboudi H,Kazemi B,Soleimani M, et al. Enhanced chondrogenesis of human bone marrow mesenchymal stem cell (BMSC) on nanofiber-based polyethersulfone (PES) scaffold[J]. Gene, 2018, 643:98-106.
[53]
Calabrese G,Forte S,Gulino R, et al. Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiationIn vitro[J]. Front Physiol, 2017, 8:50.
No related articles found!
阅读次数
全文


摘要